

Co-funded by the Erasmus+ Programme of the European Union

MASTER European Innovations for a Sustainable Management of Albanian Territories, Rural Areas and Agriculture: Instruments, policies, strategies

Module description D3.3 v.2

Module 7 Data administration and geoinformatic tools

September 2021

Developed by:

- Elvin Torromani, Agricultural University of Tirana, Albania
- Ioannis Faraslis, University of Thessaly, Larissa, Greece
- George Petropoulos, Harokopio University, Athens, Greece

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

1. Description of the module - objectives, and procedures

1.1. OBJECTIVES OF THE MODULE

The module aims to provide students an introduction to the basic knowledge and concepts of geographic information systems (GIS) and Earth Observation (EO). It is designed to provide an understanding of GIS& EO data acquisition and handling from theory to practice, demonstrating also the different types of geospatial data in solving practical problems in a range of thematic areas. Simultaneously, the course will support the development of key skills of the participants relevant to group working, presentation and assignments preparation.

1.2. LEARNING OUTCOMES

On successful completion of this module students should be able to:

- 1. Describe and explain the underlying concepts of manipulating and representing spatial data
- 2. Select and apply appropriate techniques for the collection and processing of geographic spatial data in various forms within a GIS
- 3. Identify, for particular applications, the most appropriate remote sensing datasets.
- 4. Independently using remote sensing software for the analysis of different types of Earth Observation datasets
- 5. Implement approaches to the derivation of products from remote sensing data (e.g., vegetation indices and thematic maps of land use/covers).
- 6. Undertake field studies to support the interpretation and analysis of remote sensing data.
- 7. Be able to apply a classification of remote sensing imagery

1.3. DESCRIPTION OF THE MODULE

In this module the students will find information on the following issues (a short explanation for each topic that is going to be discussed):

Topic 1: Introduction to GIS.Vector-raster. QGis and other GIS software

Topic 2: Vector-Raster data analysis.Import geospatial data,geometric correction data,digitizing

Topic 3: Database and cartography. Database join, maps creating

Topic 4: Spatial analysis. Query builder, geometric operations (buffer zones, clip etc)

Topic 5: Digital elevation model (DEM), slope, aspect, Visualization (3D Mapping)

Topic 6: Spatial Interpolation methods

Topic 7: Introduction to remote-sensing principles & different types of EO data

Topic 8: Radiometric Indices from EO data. Vegetation Indices (NDVI, Burning ration index, Leaf area index)

Topic 9: EO imagery classification techniques and change detection analysis

Topic 10: Revision Lecture and exams preparation

1.4. PREREQUISITES

To complete the module successfully participants required to have basic knowledge of the following topics:

- on maps and data analysis,
- on natural resource planning,
- basic computing skills.

1.5. STUDENTS OBLIGATIONS AND THE EVALUATION METHOD:

Assessment of the module is based on the submission of an assignment (submitted at the end of the module) and of written final exam (also at the end of the module), as summarized below:

Nb.	(the evaluation grid is only indicative, the pair of lecturers will decide of the final module evaluation grid)	Evaluation in %	Maximal amount
1	Participation to teaching hours	%	0
2	Mid-term exams	%	0
3	Individual research work	%	50
4	Final exam (written)	%	50

1.6. REQUESTS TO THE STUDENT

A. Theoretical skills

B. Practical skills

1.7. EVALUATION OF LEARNING (calculation of ECTS)

Nb.	Learning elements	Work (hours)
1	Learning elements (in the institution)	
	Theoretical class	30
	Practical class	20
	Individual or team assignments	22
	Midterm exams	3
	Total I	75
П	Individual work from the students	
1	Individual work	70
2	Preparation for the exams	5
	Total II	75
	Total (I+II)	150/250
	Numbers of ECTS	6/10

2. Calendar of the module

Week/date	Theoretical/ practical class	Teaching materials/ literature	
1	GIS theory QGIS & other GIS Source Software Import geospatial data Geometric-Correction Raster Data	 Geographic Information Systems and Science by P.A. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind, 2nd edition, 2004 GIS Commons: An Introductory Textbook on 	
III	Digitizing	Geographic Information Systems, by Michael	
IV V	Databases - join Creating Maps	 Schmandt, 2017 QGIS User guide – QGIS Training manual. Access: https://www.qgis.org/en/docs/index.html 	
VI VII	Query Builder Geometric Operations (buffer, clip)	• A Gentle Introduction to GIS, by T. Sutton, O. Dassau, M. Sutton, 2009.Access:	
VIII	DEM, Slope, Aspect	https://download.osgeo.org/qgis/doc/manual/qgis- 1.0.0_a-gentle-gis-introduction_en.pdf	
IX	3D-Visualizations	Principles of Geographic Information Systems, An	
X	Spatial interpolation methods	 introductory textbook, by Otto Huisman and Rolf A. De By, 2009. Access :https://webapps.itc.utwente.nl/ librarywww/papers_2009/general/principlesgis.pdf Introducing geographic information systems with ArcGIS: a workbook approach to learning GIS Book by Michael Kennedy 2013 Further reading. 	
XI	Introduction to Remote Sensing	 Remote sensing and image interpretation, by Thomas M. Lillesand; Ralph W. Kiefer; Jonathan W. Chipman, 2015 	
XII	Vegetation Indices – Burning Ratio Index, Normalized difference vegetation (NDVI), Leaf area index(LAI).	 Remote sensing of vegetation: principles, techniques, and applications, by Hamlyn G. Jones; R. A. Vaughan 2010 	
XIII	Image Classification & Change Detection	 Introduction to the physics and techniques of remote sensing, by Charles Elachi, c1987 	

3. Content of the module

The module will provide an introduction and background to the concepts of geographical information systems (GIS) and of Earth Observation (EO), including theory and principles as well as practical experience in entering, manipulating, analysing and interpreting spatial data. Furthermore, the module will introduce students to EO data and processing, with data acquired by a range of remote sensing sensors. In this context, it is briefly introduced the background theory and focuses also on applications of remotely sensed data across a broad range of environmental disciplines.

The module has a strong focus on the practical implementation of GIS and EO imagery analysis. It is expected that following the module completion students will be comfortable to handle a variety of geospatial data using GIS software and remote sensing image packages, skills useful to be implemented later on in a wide range of geographical disciplines. Following the module completion, students should also be able to undertake basic analysis of remotely sensed data and be in a position to be an intelligent customer for acquiring expert services in remote sensing for future employers in a wide range of research activities and practical applications alike.

4. Planning of the practical teaching classes

Week/date	Practical class	Teaching materials/ literature	
I	Introduction on GIS and GIS software tools	 QGIS User guide – QGIS Training manual https://www.qgis.org/en/docs/index.ht ml QGIS Training material https://www.qgis.org/en/site/forusers/tr ainingmaterial/index.html Geographic Information Systems and 	
II	Importing and Displaying data. Geodata processing and coordinate systems		
111	Create new geospatial data by digitizing		
IV	Manipulate database and join different databases		
V	Creating Maps		
VI	Spatial analysis procedures (Query Builder)	Science by P.A. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind, 2nd edition,	
VII	Geometric Operations (buffer, clip)	2004	
VIII	Create digital elevation models (DEM) and their products (slope, aspect)	•A Gentle Introduction to GIS, by T. Sutton, O. Dassau, M. Sutton, 2009. Access: <u>https://download.osgeo.org/qgis/doc/manual/qgis-1.0.0_a-gentle-gis-introduction_en.pdf</u>	
IX	Spatial interpolation methods on raster geospatial data. Example data to create raster maps (IDW and TIN).	 Principles of geographical information systems, by P. A. Burrough; Rachael McDonnell; P. A. Burrough, 1998 Introduction to geographic information systems, by Kang-Tsung Chang, 201 	
X	Earth Observation: introduction to the principles and different sensor and platform types (Satellite & Drone)	 Remote sensing and image interpretation, by Thomas M. Lillesand; Ralph W. Kiefer; Jonathan W. Chipman, 2015 	
XI	Indices: (i) Vegetation indices (Normalized difference vegetation (NDVI); (ii) biophysical indices (Leaf Area Index LAI)	 Measurements for terrestrial vegetation, by Charles D. Bonham, 2013 	
XII	Image Classification techniques on EO data & Change detection approaches	 Remote sensing and image interpretation, by Thomas M. Lillesand; Ralph W. Kiefer; Jonathan W. Chipman, 2015 	
ХШ	Revision		
XIV	Fieldwork		
XV	Field work		

5. Coursework

Coursework: laboratory skills report based on analysis of Remote Sensing and GIS datasets (3000 words)

6. Individual research project (if applied)

Preparation of the land cover map for the Agricultural University of Tirana (AUT) campus using satellite data and validation of the map.

DELIVERABLES DESCRIPTION

Each Topic consists of the lectures and the exercises. The zip files contain lectures, tutorials and all the necessary spatial data (Geospatial_Data.zip) in order to be implemented the practical part. Moreover, free literature (GIS_Bibliography.zip) are provided.

Topics	Theoretical (Lectures)	Practical (Tutorials)	Associated pedagogic material
Topic 1: Introduction to GIS. Vector-raster. QGIS and other GIS software	-Introduction to GIS. Basic Concepts	-Exploring QGIS Interface	Topic1_Introduction.zip Geospatial_Data.zip GIS_Bibliography.zip
Topic 2: Vector-Raster data analysis. Import geospatial data, geometric correction data, digitizing	-GIS Functionality & - Map Projections & Coordinate Systems	-Georeferencing scanned map in QGIS -QGIS Digitizing	Topic2_DataAnalysis.zip
Topic 3: Database and cartography. Database join, maps creating.	-Databases & Maps - Thematic Mapping	-QGIS Database: Create new Fields -QGIS Database: Join tables -QGIS: Map Creation	Topic3_DatabaseCartography.zip
Topic 4: Spatial analysis. Query builder, geometric operations (buffer zones, clip etc).	-Spatial Analysis	-Functions of Spatial Analysis -Proximity Analysis	Topic4_SpatialAnalysis.zip
Topic 5: Digital elevation model (DEM), slope, aspect, Visualization (3D Mapping).	-Digital Elevation Models& 3D Mapping	-QGIS: Digital Elevation Model (DEM) & 3D Representations	Topic5_DEM.zip
Topic 6: Spatial Interpolation methods.	-Spatial Interpolation	 Spatial interpolation surfaces in ArcMap environment 	TOPIC 6 (Interpolation).zip
Topic 7: Introduction to remote-sensing principles & different types of EO data	-Introduction to Remote Sensing	 Introduction to ENVI and simple image manipulation 	TOPIC_7 (Intro to RS).zip
Topic 8: Radiometric Indices from EO data. Vegetation Indices (NDVI, Burning ration index, Leaf area index).	- Radiometric Indices	- NDVI-Based Change Detection	TOPIC_8 (Vegetation Indices).zip
Topic 9: EO imagery classification techniques and change detection analysis.	-Classification & Change detection	-Change Detection	TOPIC_9 (Classification and change detection).zip