
32

Design and Development
of a Mobile App for Public Security
and Emergency Alerts in Albania

Novruz BILLA1

Teuta XHINDI2

Abstract

Albania currently lacks a centralized mechanism to quickly disseminate emergency
alerts and public safety information to its citizens. This paper presents the design
and development of a mobile application aimed at managing emergency alerts and
strengthening public safety response in Albania. The proposed system leverages real-
time push notifications to inform citizens of crises or hazards as they unfold. This
study followed a Design Science approach to gather requirements, architect a three-
tier system, and implement a prototype using modern web and mobile technologies.
The application consists of a React Native mobile client (for both iOS and Android)
and a Node.js/Express backend with a MongoDB database. Key features include
secure user authentication via JSON Web Tokens (JWT), role-based access control
for institutional users, and an initial implementation of intelligent alert classification
based on incident urgency. Preliminary testing with end-users and domain experts
indicates that the system delivers stable performance, a user-friendly interface, and
accurate, timely delivery of alerts. While these early evaluations (including a mean
System Usability Scale score of 84/100) are promising, they are not yet conclusive. The

1	 European University of Tirana, Faculty of Engineering, Informatics and Architecture,
Department of Informatics and Technology, Tirana, Albania, nbilla@uet.edu.al

2	 European University of Tirana, Faculty of Engineering, Informatics and Architecture, Department of
Informatics and Technology, Tirana, Albania, teuta.xhindi@uet.edu.al

INGENIOUS No. 5, ISSUE 2/ 2025 33

study highlights the role of modern information technology in improving institutional
emergency response and provides a foundation for further integration of the system
into national public safety infrastructure. The results and insights from this project
serve as an important step toward a full-scale deployment of a nationwide emergency
notification system in Albania.

Keywords: Public safety, Emergency alerts, Mobile application, Push
notifications, Design Science Research, Albania.

Introduction

Albania is exposed to a range of natural and man-made hazards, yet it currently
lacks a unified platform for disseminating official emergency information to
the public. Recent disasters have highlighted this gap. For example, during the
November 2019 earthquake (magnitude 6.4) that struck Albania, over 50 people
lost their lives and hundreds were injured. In the critical hours immediately after
the earthquake, official information channels were largely absent, leading to
public panic and confusion. Similarly, major floods in 2022 isolated thousands in
the Shkodër and Lezhë regions, underscoring shortcomings in timely evacuation
warnings. Beyond natural disasters, public safety incidents such as criminal
attacks or abductions also demand rapid public alerting. Although the State
Police introduced the “Digital Commissariat” app for citizens to report incidents,
there remains no comprehensive system for broadcasting emergency alerts to the
populace and enabling two-way citizen reporting in one unified platform.

Globally, governments are increasingly leveraging mobile technology for
emergency communication. Traditional siren and broadcast systems are being
augmented or replaced by direct alerts to mobile phones. Notably, the European
Union’s Electronic Communications Code (EECC) directive in 2018 mandated
that all member states implement a cell-broadcast based public warning system
by 2022. Many countries including France, Germany, Italy, and the UK have
since deployed nationwide mobile alert systems, either via cell broadcast or
smartphone applications. These systems can reach millions of people within
seconds, as evidenced by the UK’s recent nationwide alert tests (BBC News, 2022)
and similar initiatives elsewhere. The demand for timely information during
crises is clear: for instance, usage of a global earthquake alert app in Albania
surged from under 3,000 to over 146,000 users in the week following the 2019
quake, as citizens scrambled for reliable real-time updates (EMSC, 2019). The
recurring communication failures observed during these events demonstrate a
systemic need for a centralized and reliable emergency-alerting mechanism in
Albania. While various institutions use fragmented channels, websites, social

INGENIOUS No. 5, ISSUE 2/ 202534

media posts, press releases, or independent applications, none of these operate
as a unified, real-time platform capable of reaching the population instantly
and enabling structured two-way interaction. The absence of such a system
reduces institutional responsiveness, increases public uncertainty, and limits the
effectiveness of disaster-management operations. This study therefore focuses on
evaluating whether the development and implementation of a unified mobile
emergency-alert and citizen-reporting platform can effectively address these
gaps by improving communication accuracy and reducing response times.

Research Questions

RQ1. What are the specific needs and gaps in emergency communication and
alerting in Albania?

RQ2. How effective is the prototype in test scenarios (SUS, task success/time,
and communication quality)?

Hypothesis: Implementing a unified mobile application for emergency
alerts and citizen reporting will significantly improve emergency-management
effectiveness in Albania by shortening institutional and citizen response times and
increasing the accuracy and trustworthiness of public communication.

In this context, this study aims to develop a modern emergency notification
mobile application tailored to Albania’s needs. The goal is to provide a unified,
real-time communication platform whereby authorities can instantly send public
safety alerts (evacuation orders, hazard warnings) to citizens’ smartphones, and
citizens can report incidents (fires, accidents, etc.) directly to authorities. This paper
presents the system architecture, implementation, and preliminary evaluation of
the proposed solution. Its focus is on the technical design of the system a three-
tier architecture encompassing a mobile frontend, a cloud-based backend, and a
database along with security and scalability considerations. It also describes initial
usability testing results and feedback from emergency management experts,
which informed our discussion of the system’s potential impact and areas for
future improvement.

Literature review

Early warning and public alert systems have evolved significantly in recent
decades. Traditional emergency alert systems (EAS) relied on sirens and broadcast
media interruptions to reach the public. In the United States, for example, the
legacy EAS breaks into radio and TV programming for urgent messages (FCC,

INGENIOUS No. 5, ISSUE 2/ 2025 35

2019). With the ubiquity of mobile phones, attention has shifted toward cellular-
based alerting. Modern systems like the U.S. Wireless Emergency Alerts (WEA)
under FEMA’s Integrated Public Alert & Warning System (IPAWS) can push geo-
targeted text alerts to every compatible mobile phone in an affected area, with no
need for any special app . These alerts appear automatically on devices and have
proved capable of reaching broad populations almost instantly. The European
Union similarly adopted a “Reverse-112” cell broadcast approach, mandating that
all member states implement mobile public warning systems by 2022. Countries
such as France, Germany, Italy, and Sweden have since deployed nationwide cell-
broadcast systems (FR-Alert in France) to comply with this mandate.

Alongside broadcast-based solutions, many jurisdictions have experimented
with mobile applications for emergency alerts. Such apps can offer richer
interactivity (two-way reporting, multimedia content) but face challenges in
achieving widespread adoption. A notable example is France’s SAIP alert app,
launched in 2016 and intended to notify citizens of terror attacks. SAIP suffered
from technical failures and low usage, covering only about 1% of the population,
and was ultimately discontinued in 2018. France pivoted to the FR-Alert cell
broadcast system thereafter. In contrast, Germany has found some success
with apps like NINA and KATWARN, which deliver alerts to users who opt in,
complementing Germany’s newer cell broadcast system (Bundesnetzagentur,
2022). The United Kingdom launched its own nationwide mobile alert system
in 2023 using cell broadcast, conducting a full population test to ensure reach
(BBC News, 2022). These experiences suggest that while dedicated apps can
provide advanced features, integrating with device-native alert channels (like SMS
Cell Broadcast) is crucial for maximum reach and reliability. Purely app-based
systems risk leaving many users uninformed if the app is not installed or promptly
maintained.

Another line of related research focuses on leveraging artificial intelligence
(AI) to enhance emergency communications. AI and machine learning techniques
have been explored for tasks such as automatic detection of incidents (earthquake
early detection or social media monitoring) and intelligent prioritization of
alerts. These approaches could enable future systems to filter false reports and
highlight the most critical information. However, the use of AI in public safety
also raises important ethical and transparency considerations (Smith et al., 2023).
Lastly, prior studies underscore the importance of usability in emergency alert
tools. Users must be able to quickly understand and trust alerts under stressful
conditions. Standardized usability metrics like the System Usability Scale are
often applied to evaluate emergency apps (Brooke, 2013; Bangor et al., 2009).
Our work builds on these insights from the literature, aiming to combine a robust
technical architecture with user-centric design and lessons learned from global
best practices and pitfalls in emergency alert systems.

INGENIOUS No. 5, ISSUE 2/ 202536

Methodology

The methodology combines mixed methods with a Design Science Research (DSR)
approach, integrating theoretical/secondary research, iterative prototyping, and
formative usability evaluation with end users and institutional experts (Hevner et
al., 2004; Johnson & Onwuegbuzie, 2004; ISO 9241-210, 2019).

Research Approach and Design

A pragmatic paradigm with mixed methods was adopted to channel quantitative
and qualitative evidence toward engineering decision-making (Johnson &
Onwuegbuzie, 2004). The approach is grounded in DSR: building the mobile
application and evaluating it as a research contribution (Hevner et al., 2004).
In analogy with human-centered design, ISO 9241-210 (2019) principles were
followed.

The research proceeded in five phases, each building on the previous:

•	 Phase 1 - Requirements Analysis: Conduct secondary research and consult
experts to identify user needs, system constraints, and success criteria for an
Albanian emergency alert system.

•	 Phase 2 - System Design: Develop the system’s overall architecture, data
schema, security model, and interface design based on the requirements.

•	 Phase 3 - Implementation: Iteratively build the prototype (both frontend
mobile app and backend server), refining features through multiple
development cycles.

•	 Phase 4 - Expert Evaluation: Use semi-structured interviews and
walkthroughs with institutional stakeholders to assess the prototype’s
relevance, identify gaps, and gather suggestions, particularly regarding
integration with existing systems.

•	 Phase 5 - Preliminary Validation: Conduct formative usability testing with
a small group of end-users to validate core functionality and identify any
critical usability issues before larger-scale deployment.

This structured yet iterative approach allowed the project to remain flexible.
Feedback and findings from each phase fed into subsequent design adjustments,
aligning the artifact closely with both user expectations and institutional
requirements.

INGENIOUS No. 5, ISSUE 2/ 2025 37

Data Collection

End Users (SUS and Scenario-Based Tasks): Selection combined convenience
sampling (users with smartphones) and ease with aim of representing ages 18–
55 and basic digital skills. Instruments included: (a) SUS (10 items, Likert 1–5)
for usability assessment (Brooke, 2013); (b) scenario-based tasks (receiving
an emergency notification, viewing it, sending an emergency report); (c) post-
test mini-interview (5–7 minutes) for qualitative comments; and (d) procedure
involving 2–3 minute orientation, performing three tasks without guidance with
measurements (success/failure, task time, observations), SUS completion, and
mini-interview. Sessions lasted approximately 20–25 minutes per user.

Expert Interviews: Purposeful selection of three key institutional profiles.
Format: semi-structured, 25–35 minutes, online or face-to-face. Thematic guide
covered: current alert flows, integration with existing systems, operational
requirements (CAP, 112), technical/legal limitations, success criteria, and
operational indicators.

Secondary Data: Strategic documents, standards, and methodological literature
were used as secondary data to justify findings and design choices (Hevner et al.,
2004; ISO 9241-210, 2019).

Data analysis methods

SUS and Quantitative Data: SUS calculation followed Brooke’s scheme (0–4 per item
conversion), sum × 2.5 → 0–100 (Brooke, 2013). Descriptive statistics included: SUS
mean, standard deviation, score range; average task time, success rate.

Instrument reliability: Cronbach’s α for SUS (expectation α≥0.70).
Interpretive synthesis: comparison of results with guidance thresholds (SUS ≈ 68

average; >80 “good–very good”) (Bangor et al., 2009). Result calculation used Python.
Qualitative Data: Thematic analysis following Braun and Clarke (2006):

familiarization, initial coding, theme construction (instruction clarity, navigation
intuitiveness, notification trust), theme review and definition, representative
quote selection (without personal identification).

Triangulation: convergence between quantitative evidence (SUS/performance)
and expert interview data to reach verifiable design recommendations.

Validity, Reliability, and Methodological Limitations

Content validity was ensured by relying on standards and literature for task
design and SUS interpretation (ISO 9241-210; Brooke, 2013). Reliability increased
through use of a standardized instrument (SUS) and clear observation rules; where

INGENIOUS No. 5, ISSUE 2/ 202538

possible, Cronbach’s α was assessed as an internal consistency indicator. Source
triangulation (users, experts, documents/standards) and method triangulation
(quantitative/qualitative) reduced bias risk. However, the design was formative:
the small sample and controlled environment do not represent stress of real
scenarios; therefore, field piloting and high-load testing is needed before large-
scale deployment.

Ethical Considerations

Research was conducted in accordance with scientific integrity and data protection
norms: electronically documented informed consent with withdrawal option at
any time; user data anonymization and expert pseudonymization (institutional
role only); data minimization and encrypted storage/transmission with access
limited to research team only; research data retention for five years in compliance
with Law No. 9887/2008 and GDPR principles (Reg. (EU) 2016/679); and non-
harm principle with scenarios and questions formulated to avoid unnecessary
stress, with session interruption if concern arises.

Methods and Analysis

System Architecture

The system follows a three-tier architecture consisting of: (1) a presentation layer
(the mobile client), (2) an application logic layer (the backend server), and (3)
a data layer (the database). This classical design modularizes the application,
allowing each layer to be developed, maintained, and scaled independently. In
our implementation, the presentation layer is a React Native mobile application
(deployable on both iOS and Android), the logic layer is a Node.js web service
using the Express framework, and the data layer is a MongoDB document-oriented
database. This technology stack constitutes a variant of the popular MERN
architecture (MongoDB, Express, React, Node), enabling a unified JavaScript
codebase across all tiers and efficient data exchange via JSON. Communication
between the mobile app and server is facilitated exclusively through a RESTful API
over HTTPS (secure HTTP), adhering to REST design principles. The client sends
HTTP requests (to fetch alerts or submit a report) and receives JSON responses,
while the server handles application logic and interacts with the database.

INGENIOUS No. 5, ISSUE 2/ 2025 39

FIGURE 1. System architecture diagram

The mobile client communicates with the backend over the network, and the
backend in turn reads from and writes to the database. In addition, the backend
connects to external notification services (Firebase Cloud Messaging for Android
and Apple Push Notification service for iOS) to deliver urgent alerts to user
devices.

The React Native app component encompasses the user interface and client-
side logic (state management, input handling, etc.). The Node.js/Express server
component is organized into sub-modules for different functionalities (a User
controller, an Alerts controller, an Authentication service, etc.), and it exposes a
REST API interface to the client. The server also interfaces with the MongoDB
database and with the external push notification services. This architecture
promotes loose coupling; changes in one component or layer (for instance,
switching the database engine) have minimal impact on others as long as the
communication interfaces (API endpoints, data formats) remain consistent.
Such decoupling improves maintainability and extensibility of the system. The
design also inherently supports scalability and reliability: each tier can be scaled
horizontally as needed (deploying multiple Node.js server instances behind a load
balancer, or using MongoDB replication/sharding for large data volumes) and a
failure in one server node or frontend instance will not collapse the entire system.
Security considerations are addressed throughout the architecture, all client-
server communications are encrypted (HTTPS) and token-based authenticated,
sensitive data is encrypted or hashed before storage, and the database is configured
with access control roles and backup replication policies for fault tolerance .

INGENIOUS No. 5, ISSUE 2/ 202540

Functional Requirements (FR)

•	 FR-1 Emergency alerts (High): Push notifications with type, severity, area,
and protective actions; audible + vibration; ≤5s delivery.

•	 FR-2 Geo-targeting (High): GPS-based delivery; saved places (home/work);
target by radius or polygon.

•	 FR-3 Incident reporting (High): Quick form (category, text, auto-GPS,
photo/video); routed to relevant authority; confirmation; optional contact.

•	 FR-4 Chatbot assistant (Medium): FAQ guidance from verified KB
(multilingual); hands off to hotlines/live help when needed.

•	 FR-5 Interactive map (Medium): Live hazard zones, shelters/medical, user
location; tap for details; updates as events evolve.

•	 FR-6 SOS / 112 (High): Prominent button; passes GPS + ID (if logged-in);
fallback SMS with coords under poor connectivity.

•	 FR-7 Admin console (High): Secure web UI with MFA + RBAC, templates,
and full audit trail (create/approve/send times, actor).

•	 FR-8 Alert history (Medium): List of received alerts with linked updates;
filter by category.

•	 FR-9 Preferences (Low): Language, sounds, quiet hours; users cannot
disable life-critical alerts.

Non-Functional Requirements (NFR)

•	 NFR-1 Performance: End-to-end delivery <5s (normal); handle ≥100k
concurrent and scale to ~2.8M users; typical queries <2s.

•	 NFR-2 Reliability: 99.9% uptime; ≥99.5% device reach; redundancy +
automatic failover.

•	 NFR-3 Security: TLS 1.3+ in transit; AES-256 at rest; MFA for admin;
detailed audit logs; regular security testing.

•	 NFR-4 Scalability: Horizontal scale (servers, workers); DB sharding/
partitioning; efficient batched push delivery.

•	 NFR-5 Maintainability: Modular code, docs; automated unit/integration
tests; containerized deployments.

•	 NFR-6 Usability: One–two taps to key actions (view alert, report, SOS);
plain language; accessibility features (larger text, screen readers).

•	 NFR-7 Interoperability: CAP-formatted alerts; RESTful APIs; interfaces
compatible with telecom CB/112 systems.

INGENIOUS No. 5, ISSUE 2/ 2025 41

Mobile Frontend

The frontend is a cross-platform mobile application developed with React Native.
This choice allows a single codebase to natively deploy on both iOS and Android
devices, providing nearly native performance and a consistent user experience
on each platform. The mobile app’s user interface was designed to be clean and
minimalistic, focusing on critical functions to be used under emergency conditions.
It includes screens for viewing active emergency alerts (a list or map of alerts in the
vicinity), submitting a new incident report, and viewing user profile/settings. The
UI adheres to human-centered design guidelines for clarity and simplicity (ISO
9241-210:2019), with consistent navigation and large, clear interactive elements
to accommodate usage under stress. For example, posting a new incident report is
accomplished through a single form with fields for incident type, location (which
can be auto-obtained via GPS), description, and an optional photo attachment.
Figure 2 shows an example of the app’s data submission interface and alert display
screen in the prototype.

FIGURE 2. Homepage and Send Report page

INGENIOUS No. 5, ISSUE 2/ 202542

Also, to ensure responsiveness, the app manages local state (caching the latest
alerts) and uses asynchronous API calls to the server.

Authentication on the mobile app is handled via JSON Web Tokens (JWT).
Upon successful login, the server issues a signed JWT representing the user’s
identity and role. The app stores this token securely on the device (in the secure
keychain storage) and attaches it to the Authorization header of subsequent
requests. This approach eliminates the need to maintain sessions on the server
and enables a stateless authentication model that scales well. Whenever the app
is launched, it checks for a valid stored token to keep the user logged in across
sessions. If the token is missing or expired, the user is prompted to log in again.
In addition to login and registration interfaces, the app includes logic to handle
incoming push notifications. When the user first installs or opens the app, it
registers the device with the notification service (obtaining a device token) and
sends this to the backend server. This enables the server to target that device for
future alerts. If a critical alert is pushed by the server, the mobile OS will display it as
a system notification (with a distinctive sound/vibration). Tapping the notification
will automatically open the app and navigate to a detail screen showing the alert
information and safety instructions. This push mechanism allows users to receive
urgent warnings in near real-time even if the app is running in the background.

Backend and API

The backend of the system is implemented as a RESTful web service using Node.
js with the Express framework. The server is structured according to a Model–
View–Controller (MVC) pattern adapted for a web API context. The source
code is divided into logical modules: routes (Express route definitions for each
API endpoint), controllers (functions that handle requests and responses,
encapsulating application logic), models (database schemas and data access using
MongoDB via an Object-Document Mapper), and middleware components for
cross-cutting concerns (authentication, logging). For each major resource in
the system, an Express router is defined, for example, there are routes for user
management, for emergency alerts, for incident reports, and for authentication.
Each route maps HTTP endpoints (URLs and methods) to controller functions.
For instance, the route POST /api/users/register invokes a controller that creates
a new user account (after validating input and hashing the password), and POST
/api/users/login verifies credentials and, on success, returns a signed JWT token
to the client. Similarly, GET /api/alerts returns the list of active public alerts (for
authenticated users), POST /api/reports allows a logged-in citizen to submit a new
incident report (with details like type, description, and location), and POST /api/
alerts (an endpoint restricted to authorized officials) allows an institutional user
to issue a new emergency alert to the public.

INGENIOUS No. 5, ISSUE 2/ 2025 43

FIGURE 3. Active alerts page and My reports page

Security and role enforcement are central in the backend design. It employs
JWT-based authentication: clients must include the JWT token in the Authorization
header of requests to protected endpoints. A custom Express middleware
intercepts incoming requests to verify the token’s validity and decode the user
identity and role before the request reaches any controller. If the token is missing
or invalid (expired or tampered), the request is rejected with an unauthorized
error. Additionally, role-based authorization rules are implemented, for example,
only users with an “admin” or “institution” role are permitted to invoke the alert
issuance endpoint, preventing normal citizens from sending public alerts. This is
achieved via another middleware that checks the authenticated user’s role against
the required privileges for certain routes.

FIGURE 4. Creating an alert as an Admin

INGENIOUS No. 5, ISSUE 2/ 202544

In addition, passwords are never stored in plaintext in the database; the user
registration controller hashes passwords (using a secure one-way hash function
with salt) before saving, and login compares hashes to authenticate users. The
server also logs important actions (such as alert creations, report submissions) in
an audit log collection for accountability. Basic rate limiting is applied on public-
facing endpoints to prevent abuse (to mitigate spam submission of fake incident
reports).

Once an institutional user (or the system automatically) issues an emergency
alert, the backend notifies all relevant users in real time via push notifications.
The server is integrated with cloud messaging services, specifically, Firebase
Cloud Messaging (FCM) for Android clients and Apple Push Notification
service (APNs) for iOS. The system keeps track of each registered device’s
token (provided by the app). When a new alert is to be broadcast, the backend
constructs a notification payload (including the alert title, message, and possibly
a geographic target or category) and sends it through FCM/APNs to all devices
or to devices in a specific area, as appropriate. User devices receive these as native
push notifications accompanied by a distinctive alert sound even if the app is not
active. This publish-subscribe design ensures fast and reliable dissemination of
critical messages; leveraging the infrastructure of Google’s and Apple’s notification
servers allows the system to scale to large numbers of recipients with minimal
latency. For particularly urgent incidents reported by citizens, the backend can
also perform an automatic escalation: for example, if a user report is classified as
extremely critical (such as a major fire or explosion), the system can immediately
generate a public alert based on that report’s data and push it out to nearby users
(after confirming validity). This feature provides a form of intelligent alerting,
shortening the response time when every second counts.

Internally, the backend uses the Mongoose ODM (Object Data Modeling
library for MongoDB) to interact with the database. Data schema definitions
(models) are defined for each main entity, for example, a User model, Alert model,
Report model, etc. These models enforce schema constraints (field types, required
fields, validations) at the application level and provide convenient methods for
database CRUD operations. Controllers use these model classes to query or
update the database. By using a non-blocking, event-driven runtime (Node.js)
and asynchronous I/O, the server can handle many concurrent requests efficiently,
which is essential under high-load scenarios (during a widespread emergency
when many clients may connect simultaneously).

Database Design

The system’s data is stored in a MongoDB NoSQL database. MongoDB was chosen
for its flexibility in handling dynamic data structures and its high throughput for
read/write operations on large datasets. The database contains several collections

INGENIOUS No. 5, ISSUE 2/ 2025 45

corresponding to the core entities of the application: Users, Institutions, Alerts,
Reports, and Logs. Figure 5 illustrates the simplified entity-relationship schema
of these collections and their relationships. Each User document stores a user’s
information, including a unique user ID, name, email, a hashed password, role
(“citizen” or “institution”), registration date, and status (active or suspended).
Regular citizens have the “user” role, whereas authorized agency officials have
an “institution” role (optionally linked to an entry in the Institutions collection).
The Institutions collection contains entries for official agencies (Civil Emergency
Directorate, State Police, Fire Department), with fields for institution name, type,
jurisdiction/region, and contact details. This allows the system to associate certain
user accounts with their respective institutions and to tag alerts or reports with the
responsible agency.

The Alerts collection stores the emergency alerts issued to the public. Each
Alert document includes an alert ID, a title (short description of the emergency,
for example “Earthquake in Tirana”), a detailed message, a category (term for the
emergency type: weather, earthquake, fire, security, etc.), a timestamp for when
the alert was issued, an optional location (pinned coordinates or region), and a
reference to the issuer (which could be an institution or admin user ID). Public
alerts may also link to a specific report if the alert was generated as a response to
a user-reported incident (creating a traceable connection between a citizen report
and a follow-up public warning). The Reports collection contains incident reports
submitted by end-users. A Report document captures details such as a report ID,
the type of incident (accident, fire, crime), the description provided by the user, the
timestamp of reporting, the location (GPS coordinates or an approximate address)
of the incident, the userId of the reporter, and a status field. The status can be
updated by authorities (“pending”, “verified”, “resolved”) to reflect the progress
of handling the incident. There is a one-to-many relationship between Users and
Reports (each user may submit multiple reports) and reports can be associated
with institutions via an assignedTo field (denoting which agency is handling the
report). The Logs collection is used to track and audit actions in the system. Each
log entry includes a log ID, an optional userId (if the action is tied to a specific
user), an action description (“User Login”, “Report Submitted”, “Alert Issued”), a
timestamp, and perhaps additional details such as the IP address or related record
ID. These logs facilitate monitoring and can be analyzed to detect any misuse or
to generate usage statistics.

INGENIOUS No. 5, ISSUE 2/ 202546

FIGURE 5. ERD diagram for Users, Reports, Logs, Alerts, Institutions

In designing the database schema, normalization was balanced with
performance. MongoDB’s document model allows related data to be embedded
within a single document if it is frequently accessed together, while other
relationships are maintained via references (identifiers linking documents). For
example, the geolocation details of a report (latitude/longitude) are stored as
an embedded sub-document within the Report document for quick access and
completeness. Meanwhile, links between users and their reports, or alerts and their
issuing institution, are kept as references (IDs) rather than nested documents, since
those entities are managed separately and using references avoids duplication and
inconsistency. This hybrid approach achieves a flexible, semi-structured schema
optimized for the app’s query patterns. The database is also configured for fault
tolerance and scalability. MongoDB is deployed in a replica set configuration: the
primary node handles reads/writes, while secondary nodes maintain copies of
the data, providing redundancy if the primary fails. This replication also enables
scaling read operations across multiple nodes. Access to the database is protected
by authentication credentials and role-based permissions, and all network traffic
between the backend server and database is encrypted. In summary, the database
design supports the application’s need to efficiently store and retrieve emergency
data, maintain data integrity (through relational links between collections), and
scale to accommodate growing numbers of users and reports.

Results and discussion

Preliminary Evaluation

A preliminary evaluation of the prototype was conducted focusing on usability
and stakeholder feedback. Usability testing was performed with 10 volunteer end-
users (students and professionals) who were asked to install the app and perform

INGENIOUS No. 5, ISSUE 2/ 2025 47

a set of core tasks (such as registering an account, reporting a sample incident,
and responding to a test alert). After completing the tasks, participants filled out
the System Usability Scale (SUS) questionnaire. The results were very positive:
the average SUS score was 84 out of 100 (standard deviation ~5), with individual
scores ranging from 78 to 90. This exceeds the typical SUS benchmark of ~68
(considered “average” usability); a score above 80 is generally characterized as
indicating excellent usability. All participants were able to successfully complete
the scenario tasks, and their subjective feedback was that the app was intuitive and
the workflow (from receiving an alert to taking recommended actions) was clear.
Some users noted that the interface felt “simple and clean,” which is desirable for an
emergency app. A few minor suggestions were made, such as providing an offline
mode for viewing downloaded alerts or using more distinct alert notification
sounds, which can be addressed in future iterations.

In addition to end-users, input from domain experts was gathered in relevant
public safety fields. Interviews were conducted with three experts: a civil
emergencies officer, a senior police officer, and a medical emergency doctor.
Overall, the experts strongly supported the concept of the application and its
potential benefits. The following are their opinions given in the interviews:

The civil emergency expert noted that a platform enabling real-time public
warnings “could be an extremely valuable addition to the current emergency
alert system,” emphasizing that rapid information dissemination “can save lives,
especially in natural disasters” and that location-targeted alerts are something that
“currently is missing in many cases” (Civil Protection representative, paraphrased).

The police expert highlighted the app’s utility for urgent law enforcement
situations, such as ongoing violent incidents or AMBER Alert-type child abduction
cases, as well as its use for quickly notifying citizens of roadblocks or evacuation
orders. He remarked that “this app could help us spread critical notifications much
faster than traditional means like press conferences or TV broadcasts,” underscoring
the immediacy of push alerts.

The medical emergency expert similarly stressed that in public health crises
or mass casualty events, “accurate and timely information is the first remedy… This
app can disseminate life-saving instructions within seconds to thousands of people.”
Such feedback indicates that stakeholders see the prototype as addressing real
needs in the current emergency communication ecosystem.

Despite the encouraging results, the evaluation also revealed important
limitations. First, the usability test was limited to a small sample and conducted in
a controlled setting; users were not under true emergency stress. Thus, the results,
while indicative, are not conclusive of performance in a real crisis. Second, the
system has not yet been tested under heavy load or in a wide-area deployment.
Questions remain about how the infrastructure will handle tens or hundreds of
thousands of concurrent users and rapid influxes of reports. Third, the success

INGENIOUS No. 5, ISSUE 2/ 202548

of the platform depends on broad adoption and trust both by the public and
by government agencies. The experts pointed out that integrating the app with
official emergency operations would require formal agreements, training, and
public awareness campaigns. Some also noted the challenge of filtering out false or
duplicate reports from citizens to avoid information overload. These preliminary
findings will guide the next steps of development, focusing on enhancing the
system’s robustness and preparedness for real world deployment.

Discussion and future work

The development and early evaluation of this emergency alert application
demonstrate the feasibility and potential of such a system in strengthening public
safety. The high usability scores and positive user feedback suggest that even non-
technical users can navigate the app and respond to alerts effectively. Likewise,
the enthusiastic responses from field experts indicate a strong demand for the
capabilities provided by the system. If implemented at scale, the application could
significantly improve emergency response workflows. For instance, it would enable
authorities to gather structured, real-time incident data directly from citizens,
leading to more informed and faster decision-making. It would also facilitate
better inter-agency coordination: all relevant agencies (police, fire, medical, etc.)
can gain a shared operational picture of an incident as information flows into
the unified platform, addressing the common problem of siloed communications
and leading to a more synchronized response. Furthermore, the app can serve
as an official channel for urgent public communications, complementing existing
methods. Traditional mass-alert channels like sirens, radio/TV broadcasts, SMS
cell broadcasts would not be replaced, but augmented by this interactive mobile
medium. By reaching users directly and allowing two-way interaction, the system
can fill gaps (such as delivering rich context or receiving crowd-sourced updates)
that one-way legacy channels cannot.

Despite these benefits, several challenges and areas for future work remain. A
key priority is to move beyond the prototype and conduct extensive field testing.
The plan is to deploy the app in a pilot program with a larger and more diverse
user base, possibly in collaboration with a local municipality or civil protection
unit. This would provide insight into user adoption rates and reveal usage issues
in a real-world context. It is also critical to perform stress-testing and ensure
the system can handle high volumes of traffic. Emergency scenarios can lead to
sudden spikes in usage (thousands of people reporting the same earthquake or
seeking information), so the backend and network infrastructure must be robust.
Techniques such as cloud auto-scaling, load balancing, and database query
optimization will be explored to guarantee reliability. Ensuring a high uptime and

INGENIOUS No. 5, ISSUE 2/ 2025 49

low latency is paramount, for example, aiming for at least “three nines” (99.9%)
availability in line with best practices for critical systems.

Another future direction is to enhance the app’s intelligence and integration.
The current prototype implements a basic rule-based alert classification
(automatically elevating certain critical reports). In the future, machine learning
models could be incorporated to analyze incoming reports or social media feeds
to detect emerging crises faster, though any AI components would need thorough
validation to avoid false alarms. It’s needed also to recognize the importance of
official integration: to be truly effective, the platform should be integrated with
national emergency infrastructures (the 112-emergency call system or existing
public warning systems). Achieving this will require close collaboration with
government agencies and may involve adhering to common alerting protocols or
data standards. On the organizational side, formal agreements and clearly defined
operating procedures would be needed for authorities to confidently use the app
during actual emergencies. The issue of public trust will also be a focus, much
work will be put on communication strategies to ensure that citizens understand
the app’s purpose and that alerts sent via the app are authoritative. This includes
cybersecurity hardening to prevent unauthorized or false alerts, learning from
incidents like the false missile alert in Hawaii (2018) which underscored the
damage a faulty alert can cause to public trust (FEMA, 2019).

Lastly, there are several feature improvements planned. These include multi-
language support (important in Albania’s context to reach ethnic minorities and
tourists), accessibility enhancements for users with disabilities, and perhaps
a web-based dashboard for emergency operators to manage alerts on a larger
screen. Also, an aim is to incorporate a feedback mechanism so that after an alert
or incident, users can receive confirmations or all-clear messages and provide
feedback on the event’s outcome. In summary, future work will address scaling
up the system, tightening its integration with official workflows, and refining its
features based on stakeholder input.

Conclusions

This paper presented the design and development of a mobile application for public
safety and emergency alerts in Albania and discussed its preliminary evaluation.
The research was motivated by the absence of a dedicated, centralized emergency
communication platform in Albania’s public safety landscape. By implementing
a React Native mobile client and a Node.js/Express backend with a MongoDB
database, was realized a functional prototype capable of delivering real-time
emergency notifications and collecting citizen reports. The system’s architecture

INGENIOUS No. 5, ISSUE 2/ 202550

emphasizes scalability, security, and interoperability with established technologies
(RESTful APIs, push notification services).

Initial preliminary testing results are promising, the application demonstrated
a high level of usability (SUS score 84/100) and received encouraging feedback
from both end-users and public safety experts. These findings suggest that the
proposed solution is not only technically viable but also addresses real user needs
in crisis situations. The police, emergency management, and medical experts that
were consulted foresee the app strengthening the speed and effectiveness of public
warnings and incident response. However, we emphasize that these results are
preliminary. The prototype has yet to face the demands of a large-scale deployment
or a live emergency. Additional development and validation are required to ensure
the system’s reliability, security, and integration into the broader emergency
response ecosystem.

The development of this emergency alert app represents an important step
toward modernizing crisis communication and public engagement in Albania.
The system offers a new digital tool in the toolkit of disaster management, one that
can empower citizens and authorities alike through instant, two-way information
sharing. With further refinement and official support, such an application could
significantly enhance public safety, helping to protect lives and property when
emergencies occur. I intend to continue this work by collaborating with national
institutions to pilot the system in real-world settings, implement the improvements
identified, and ultimately move closer to deploying a fully operational emergency
notification network for Albania.

References

BBC News. (2018). France withdraws SAIP emergency alert app after malfunctions. BBC
News. (Archived news report).

BBC News. (2022). UK emergency alerts system. BBC News. Retrieved from BBC News
website: https://www.bbc.com/news/uk-64371490

Bangor, A., Kortum, P. T., & Miller, J. T. (2009). Determining what individual SUS scores mean:
Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114–123.

Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice (3rd ed.).
Addison-Wesley.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(2), 77–101.

Brooke, J. (2013). SUS: A retrospective. Journal of Usability Studies, 8(2), 29–40.
Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (BBK). (2022). Warnsysteme in

Deutschland (NINA, KATWARN, Cell Broadcast). Retrieved from https://www.bbk.bund.
de/

Bundesnetzagentur. (2022). Technical directive: DE-Alert cell broadcast system. Retrieved
from

https://www.bundesnetzagentur.de/SharedDocs/Pressemitteilungen/EN/2022/20220223_
CellBroadcast.html

INGENIOUS No. 5, ISSUE 2/ 2025 51

Cantelon, M., Harter, M., Holowaychuk, T., & Rajlich, N. (2014). Node.js in Action. Manning
Publications.

Chodorow, K. (2013). MongoDB: The Definitive Guide (2nd ed.). O’Reilly Media.
Davies, R. (2022). Albania floods: Thousands isolated in Shkodër and Lezhë. Disaster Watch

Journal, 7(2), 8–12.
European Commission. (2018). Directive (EU) 2018/1972 of the European Parliament and of

the Council establishing the European Electronic Communications Code (EECC). Official
Journal of the European Union, L321, 36–214.

European Commission. (2022). Report on mobile public warning system implementation in
the EU. Brussels: European Commission.

European-Mediterranean Seismological Centre (EMSC). (2019). LastQuake usage metrics
after the 2019 Albania earthquake. Retrieved from https://www.emsc-csem.org/

Federal Communications Commission (FCC). (2019). Emergency Alert System (EAS)
overview. Retrieved from https://www.fcc.gov/general/emergency-alert-system-eas

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures (Doctoral dissertation, University of California, Irvine).

FR-Alert. (2022). FR-Alert: France’s new nationwide emergency alert system [Press release].
Paris: Ministère de l’Intérieur (France).

Guterres, A. (2022). Every person protected: Global Early Warning Initiative. United Nations.
Retrieved from https://www.un.org/early-warnings/

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS Quarterly, 28(1), 75–105.

Institute of Statistics (INSTAT). (2020). Albania Earthquake 2019 – Key Statistics Report.
Tirana: INSTAT.

International Organization for Standardization (ISO). (2019). ISO 9241-210:2019 Ergonomics
of human-system interaction—Human-centred design for interactive systems. ISO.

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm
whose time has come. Educational Researcher, 33(7), 14–26.

Jones, M. B., Bradley, J., & Sakimura, N. (2015). JSON Web Token (JWT) (RFC 7519). Internet
Engineering Task Force (IETF).

Jones, K., & Patel, N. (2020). Ensuring 99.9% uptime: Best practices for high-availability
systems. Journal of Cloud Engineering, 5(4), 10–18.

Nwajana, A. O. (2025). Public safety mobile applications in West Africa. African Journal of
Mobile Systems, 9(1), 95–110.

Policia e Shtetit. (2022). “Komisariati Dixhital” – Raport mbi përdorimin e aplikacionit dixhital
të policisë. Tirana: Albanian State Police

React Native. (2023). Secure storage and keychain usage in React Native. React Native
Documentation. Retrieved from https://reactnative.dev/docs/security#secure-storage

Regulation (EU) 2016/679. (2016). General Data Protection Regulation (GDPR). Official
Journal of the European Union, L119, 1–88.

U.S. Federal Emergency Management Agency (FEMA). (2019). Hawaii false missile alert:
After-action report. Washington, DC: FEMA.

U.S. Federal Emergency Management Agency (FEMA). (2021). Integrated Public Alert &
Warning System Annual Performance Report, 2021. Washington, DC: FEMA.

U.S. Federal Emergency Management Agency (FEMA). (2023). Nationwide Emergency Alert
System test results and improvements. Washington, DC: FEMA.

World Meteorological Organization (WMO). (2021). Atlas of mortality and economic losses
from weather, climate and water extremes (1970–2019). Geneva: WMO.

