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Abstract

This paper presents a comprehensive architecture for automated traffic violation 
surveillance. It is based on sophisticated deep learning algorithms and artificial 
intelligence systems with computer vision. The main objective is to develop an 
integrated pipeline that integrates vehicle detection, Automatic License Plate 
Recognition (ALPR), and visual attribute classification (e.g., color, manufacturer, 
and model). YOLO detection, DeepSORT tracking, CRNN network OCR, and CNN 
for car brand and color categorization are all parts of the technical solution. The 
study fully compares Edge and Cloud architectures, examining how well they perform 
under different conditions, such as high traffic and poor lighting. The findings show 
that, while Cloud solutions offer more flexibility but at a higher latency cost, Edge 
solutions, despite their processing limitations, achieve response times below 200 ms 
and accuracy above 95% in license plate identification.

Along with specific implementation recommendations for the Albanian context, 
the study addresses algorithmic fairness, privacy protection and GDPR compliance. 
It also addresses the ethical and legal elements of using surveillance technologies, 
highlighting the prospects and challenges for a successful adoption in Albania.

Furthermore, to compensate for the personalized data pages for the Albanian 
market, synthetic data models were included in the initial training. This was 
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sufficient on the ground to allow for higher algorithmic adaptability. Investments in 
human resource training and a well-defined framework are also necessary for the 
deployment of technologies to ensure accountability, transparency and responsibility 
for all. This comprehensive strategy lays the foundation for an automated application 
system in Albania that is reliable and sustainable.

Key words: Automated Traffic Surveillance, Automatic License Plate 
Recognition, Vehicle Attribute Recognition, Deep Learning & Computer Vision, 
Edge and Cloud Architecture, Ethical & GDPR Compliance

Introduction
 

Introduction and Background

Road safety and efficient traffic management are fundamental pillars of modern 
societies. The ability of a nation to ensure safe mobility directly impacts its social 
welfare, economic productivity, and environmental sustainability (World Health 
Organization, 2023). Albania, like many developing economies, has experienced 
a dramatic increase in the number of registered vehicles in the past three decades. 
More than 700,000 vehicles are now circulating in a relatively small and urbanizing 
country, reflecting greater economic access to transportation but also introducing 
significant costs in terms of congestion, urban pollution, and rising accident rates 
(European Transport Safety Council, 2022).

Statistics show that thousands of traffic incidents are recorded annually in 
Albania, with dozens of fatalities and hundreds of serious injuries. These events 
translate into economic losses exceeding 2.5% of the national GDP, through 
healthcare costs, productivity losses, infrastructure damage, and delays in mobility 
(INSTAT, 2023). Beyond their economic weight, these incidents expose the 
inability of current institutional frameworks to regulate and enforce traffic laws 
effectively. Police patrols and conventional monitoring systems lack the scalability 
and precision to handle the complexities of modern traffic in Albania’s rapidly 
growing cities.

This situation places Albania in a unique position. On one hand, it suffers from 
the absence of a centralized and automated system for identifying and sanctioning 
traffic violations. On the other hand, its manageable size and urgent need for 
digitalization create an opportunity to adopt cutting-edge intelligent surveillance 
technologies. By integrating Artificial Intelligence (AI), Computer Vision, and 
Automated License Plate Recognition (ALPR) systems, Albania could leapfrog 
traditional approaches and establish a transparent, efficient, and accountable 
traffic management ecosystem.
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However, such a transformation cannot occur in a vacuum. Ethical, legal, and 
social concerns must accompany technological progress. AI-driven surveillance 
brings questions of privacy, fairness, and compliance with European regulations 
such as the General Data Protection Regulation (GDPR). Ensuring public trust, 
institutional accountability, and legal legitimacy will be critical for success 
(European Union Agency for Fundamental Rights, 2021).

Problem Statement

The core research problem addressed in this study lies in designing an integrated 
pipeline capable of recognizing vehicle license plates and associated attributes—
such as color, make, and modeling real-world conditions. This problem is 
multidimensional, cutting across technical, infrastructural, and ethical domains.

ALPR and Vehicle Attribute Recognition (VAMR) systems must function 
reliably in diverse scenarios: poor lighting, nighttime conditions, adverse weather 
(rain, fog, snow), high vehicle speeds, occlusions and damaged or non-standard 
plates. Such environmental and operational variables significantly challenge AI 
algorithms, which often underperform when exposed to conditions outside their 
training datasets (Redmon & Farhadi, 2018).

Albania faces an additional complexity due to the coexistence of multiple 
license plate formats, national, historical, and foreign. Flexible algorithms are 
required to recognize this heterogeneity, including multilingual fonts, varying 
colors, and design elements. Similarly, vehicles on Albanian roads exhibit great 
variety in brand and model, often making fine-grained classification difficult. 
Most existing solutions treat license plate recognition and vehicle attribute 
recognition separately. The challenge is to integrate these tasks into a single 
coherent architecture, where the outputs of one module reinforce the reliability of 
the other. This raises architectural and algorithmic issues, particularly concerning 
error propagation and confidence fusion between subsystems (Li et al., 2019).

Law enforcement applications demand real-time inference, often across 
multiple cameras deployed simultaneously. This introduces trade-offs between 
computational cost, latency, and system scalability. Choosing between Edge 
computing, where data is processed locally on embedded devices, and Cloud 
computing, where data is centralized for processing, is a major design decision. 

High-performing Deep Learning models require large, high-quality annotated 
datasets. Albania lacks curated traffic surveillance datasets tailored to its specific 
conditions. Manual data collection and annotation is resource-intensive, while 
synthetic data generation and transfer learning only partially mitigate this gap.

Finally, AI-based traffic surveillance inevitably raises ethical dilemmas. License 
plates are legally considered personal data under the GDPR, and improper storage 
or processing risks violating individual rights. Biases in algorithmic performance 
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could disproportionately impact minority groups, while misidentifications 
could lead to unjust sanctions (Barocas, Hardt, & Narayanan, 2019). Addressing 
these concerns requires robust anonymization techniques, transparent auditing 
mechanisms, and public communication strategies.

Objectives, research questions and hypothesis

In response to these challenges, this study sets fifth the following objectives:

•	 To analyze and evaluate the application of state-of-the-art AI techniques, 
especially Deep Learning, in ALPR and VAMR tasks under Albanian traffic 
conditions.

•	 To design an integrated architecture that combines license plate recognition 
and vehicle attribute recognition in a unified pipeline.

•	 To develop or adapt Deep Learning models capable of identifying vehicle 
color, make, and model with high accuracy.

•	 To assess system performance using standardized metrics, focusing 
on accuracy, speed (frames per second), and robustness in real-world 
conditions.

•	 To examine ethical, legal, and social implications of deploying automated 
surveillance in Albania, ensuring compliance with GDPR and public trust.

Research Questions

Building on the objectives, the study frames its inquiry around several guiding 
research questions (RQs):

RQ1: What are the most effective Deep Learning architectures for implementing 
ALPR and VAMR in high-volume traffic conditions?

RQ2: How can the robustness of ALPR systems be improved to handle low 
lighting and adverse weather conditions?

RQ3: What is the optimal architecture for integrating ALPR and VAMR 
modules into a unified pipeline, balancing accuracy and computational 
efficiency?

RQ4: What are the trade-offs between Edge and Cloud inference for real-time 
automated traffic surveillance?

RQ5: What ethical, legal, and privacy considerations must be addressed for 
large-scale deployment in Albania?

The main hypothesis guiding this research is: AI-driven solutions significantly 
enhance speed, accuracy, and reliability in traffic violation detection compared 
to traditional systems, thereby improving road safety and enforcement efficiency.
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Literature Review and Gaps 

Evolution of Traffic Surveillance Technologies

Traffic monitoring has undergone a remarkable transformation over the past 
century. Early methods were entirely manual, with police officers stationed at 
intersections to observe violations and direct traffic flow. In the mid-20th century, 
pneumatic tubes and inductive loop detectors (ILDs) represented the first steps 
toward automation, offering basic vehicle counts and speed measurements.

The proliferation of Closed-Circuit Television (CCTV) in the 1960s–1970s 
introduced visual monitoring, but systems still relied heavily on human operators. 
In the 1980s–1990s, Video Incident Detection (VID) systems emerged, using 
background subtraction and motion analysis to detect sudden stops, wrong-way 
driving, and congestion (Parker & Harris, 1998). Yet these were fragile under 
lighting variation and weather changes.

From the 1990s onwards, radar and LiDAR became widely used for speed 
enforcement and red-light violation detection, enabling partial automation. These 
systems, however, were limited in their ability to identify vehicles beyond plate 
numbers, offering little in terms of broader traffic analytics (Zhang et al., 2017).

The 2010s marked the era of AI-powered traffic surveillance, where 
Convolutional Neural Networks (CNNs) revolutionized object detection and 
recognition. Today, AI-based ALPR/VAMR systems can detect vehicles, read 
plates, and classify attributes (color, make, model) with high accuracy in near real-
time, representing a leap in automation, scalability, and analytical depth (Redmon 
& Farhadi, 2018).

Artificial Intelligence in Intelligent Transportation Systems (ITS)

AI integration has significantly expanded the capabilities of Intelligent 
Transportation Systems (ITS). Its strengths lie in processing vast amounts of 
heterogeneous data—from cameras, sensors, GPS, and mobile applications—
to support predictive modeling, real-time decision-making, and autonomous 
operation. Applications include:

•	 Traffic flow prediction: Machine Learning models forecast congestion using 
time-series analysis 

•	 Adaptive traffic light control: Reinforcement Learning optimizes signal 
timings in real time.

•	 Navigation systems: Platforms like Google Maps and Waze apply AI to 
predict travel times and reroute drivers dynamically.
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•	 Autonomous driving: Deep Learning enables environment perception, 
sensor fusion, and decision-making in self-driving cars.

•	 Law enforcement: Computer Vision detects violations such as speeding, 
red-light running, illegal parking, and distracted driving (Li et al., 2019).

AI thus transforms ITS from reactive infrastructures into proactive, intelligent 
ecosystems that optimize safety, efficiency, and sustainability.

FIGURE 1: Example of vehicle and license plate recognition.

Automated License Plate Recognition (ALPR)

ALPR is a cornerstone technology in traffic enforcement. It typically involves four 
stages: image acquisition, plate detection, character segmentation, and optical 
character recognition (OCR). Advances in object detection, particularly YOLO 
(You Only Look Once), SSD (Single Shot Detector), and Faster R-CNN, have 
greatly improved plate localization. OCR accuracy has been boosted by CRNNs 
(Convolutional Recurrent Neural Networks), which combine CNNs and LSTMs 
for end-to-end recognition without explicit character segmentation (Shi et al., 
2017).

Challenges persist, however, in dealing with varying plate designs, occlusions, 
glare, damaged characters, and high-speed motion blur. Benchmarks show state-
of-the-art ALPR systems achieving 95–98% accuracy under controlled conditions 
but lower performance in adverse real-world scenarios.
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Vehicle Attribute Recognition (VAMR)

While license plates uniquely identify vehicles, attribute recognition enhances 
reliability and utility. Color, make, and model recognition aid in detecting cloned 
or stolen plates, re-identifying vehicles across camera views, and enabling traffic 
composition analysis (Sochor et al., 2018).

Fine-grained classification is the key challenge: distinguishing between visually 
similar models or color shades requires high-quality datasets and sophisticated 
CNN architectures. Large,47784 annotated datasets such as CompCars and 
BoxCars116k have accelerated progress (Yang et al., 2015). Transfer learning from 
models trained on ImageNet has also proven highly effective.

Ethical and Privacy Concerns

The expansion of surveillance technologies has sparked extensive debate on privacy 
and civil liberties. ALPR inherently creates location trails of vehicles, which, if 
stored extensively, risk enabling mass surveillance beyond traffic law enforcement. 
GDPR explicitly classifies license plates as personal data, requiring strict adherence 
to principles of data minimization, storage limitation, and purpose specification. 

Algorithmic fairness is another critical concern. Biases in training data can 
produce disproportionate misidentification rates across demographic groups, 
undermining trust and legitimacy (Buolamwini & Gebru, 2018). Transparent 
auditing, explainability, and public engagement are increasingly emphasized as 
safeguards (European Commission, 2021).

Despite notable advancements, several research gaps persist. First, there is a 
lack of integrated evaluations, as most studies analyze ALPR and VAMR systems 
separately rather than as unified, real-world pipelines. Second, regional adaptation 
remains limited, with datasets primarily reflecting Western formats and failing to 
generalize to regions like Albania. Third, edge–cloud trade-offs are insufficiently 
explored, particularly regarding latency, cost, and privacy balance. Fourth, the field 
suffers from benchmarking inconsistencies, as new Deep Learning architectures 
emerge faster than standardized evaluations. Finally, ethical considerations are 
often discussed broadly, without adaptation to specific national and cultural 
contexts. 

Computer Vision and Deep Learning Foundations

Computer Vision (CV) provides the theoretical and practical foundation for 
automated traffic surveillance. Its objective is to enable machines to interpret 
visual information from images and video streams. Historically, CV relied on 



INGENIOUS No. 5, ISSUE 2/ 2025 113

handcrafted feature extraction methods such as Scale-Invariant Feature Transform 
(SIFT) and Histogram of Oriented Gradients (HOG), which required human 
expertise to design features relevant for object detection.

The emergence of Deep Learning, particularly Convolutional Neural 
Networks (CNNs), revolutionized the field by enabling end-to-end learning. 
CNNs automatically extract hierarchical visual features, from low-level edges to 
high-level object representations, thereby surpassing handcrafted approaches in 
robustness and scalability (LeCun, Bengio, & Hinton, 2015). For sequence-based 
tasks, Recurrent Neural Networks (RNNs) and their variants, such as Long Short-
Term Memory (LSTM), handle temporal dependencies in traffic video streams. 
Together, CNN-RNN hybrids such as CRNNs are particularly effective in character 
recognition for license plates (Shi et al., 2016).

Data Requirements for Surveillance Models

Deep learning systems rely heavily on large and well-curated datasets to achieve 
effective training and reliable performance. The size, diversity, and quality of the 
dataset play a crucial role in determining how well a model can generalize to new, 
unseen scenarios. To ensure this generalization, several factors must be carefully 
considered during dataset design and preparation.

One of the most important aspects is the diversity of environments represented 
in the dataset. Models trained only under ideal conditions often fail when faced 
with real-world variability. Therefore, datasets should include images captured 
in different lighting situations—day and night—as well as under various weather 
conditions such as rain, fog, or snow. Additionally, the inclusion of different 
traffic densities and urban or rural scenes enhances the system’s ability to perform 
consistently across diverse environments.

Another key consideration is balance representation. In traffic surveillance 
and vehicle recognition systems, certain vehicle types, such as sedans or compact 
cars, are much more common than others, like buses, motorcycles, or trucks. If a 
dataset reflects this imbalance, the model may become biased, performing well in 
frequent classes but poorly on rare ones. Ensuring an even distribution of vehicle 
categories helps maintain fairness and accuracy across all types.

To further strengthen dataset quality, data augmentation techniques are 
widely applied. Methods such as random cropping, image rotation, flipping, 
and brightness adjustments can artificially increase the size of the dataset. These 
transformations expose the model to a broader range of visual variations, making 
it more robust to distortions, angles, and lighting changes that occur in real-life 
traffic footage.

In addition, transfer learning provides an efficient solution for overcoming 
data limitations. Instead of training a model entirely from scratch, researchers 
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can fine-tune neural networks that have already been pretrained on large-scale 
datasets like ImageNet. This approach allows models to benefit from previously 
learned visual features and significantly reduces the need for massive amounts of 
new, domain-specific data (Kornblith et al., 2019).

Another promising technique is the use of synthetic data computer-generated 
imagery that replicates real-world traffic scenes. Synthetic datasets can simulate 
different conditions, vehicle types, and perspectives that may be difficult or 
expensive to capture manually. However, successful integration of synthetic and 
real data requires careful domain adaptation, ensuring that models trained on 
artificial images can perform effectively when applied to real environments.

In the context of Albania, one of the major challenges in developing deep 
learning-based traffic surveillance systems is the lack of annotated, high-quality 
datasets. To address this, a hybrid strategy is recommended. This involves 
combining synthetic datasets with transfer learning approaches while gradually 
collecting and annotating real-world images from Albanian traffic environments. 
Such a method not only accelerates initial system development but also lays the 
foundation for continuous improvement as more local data becomes available.

Through this integrated approach—balancing diversity, augmentation, transfer 
learning, and synthetic generation—deep learning models for traffic surveillance 
in Albania can achieve greater accuracy, adaptability, and long-term scalability.

Preprocessing Pipelines: Detection and Tracking

Traffic surveillance systems operate through structured pipelines that begin with 
the detection of vehicles and license plates and proceed with tracking them across 
consecutive frames. This process ensures that every detected object is not only 
recognized but also consistently followed over time, allowing accurate monitoring 
of traffic flow and potential violations.

The first step, object detection, focuses on identifying vehicles or license plates 
within individual frames. One of the most influential models in this domain is 
YOLO (You Only Look Once), which treats detection as a single regression 
problem over bounding boxes and class probabilities (Redmon & Farhadi, 2018). 
YOLO’s remarkable speed and efficiency make it ideal for real-time traffic analysis, 
where high frame rates and immediate detection are essential.

Following detection, object tracking maintains the continuity of identified 
vehicles across frames. A leading approach is DeepSORT, which enhances 
the original SORT algorithm by combining Kalman filtering with deep feature 
embeddings (Wojke, Bewley, & Paulus, 2017). This enables the system to preserve 
the identity of vehicles even when they temporarily disappear due to occlusions 
or overlaps.
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Together, these methods form a “tracking-by-detection” architecture, an 
integrated framework in which detection provides bounding boxes for each 
object, and tracking ensures their consistent identification throughout the video 
sequence. This synergy between detection and tracking is fundamental for 
building reliable, real-time traffic surveillance systems capable of continuous and 
accurate vehicle monitoring.

Key Algorithms and Architectures

TABLE 1: Summary of key algorithms used in ALPR  
and vehicle attribute recognition systems.

Algorithm Architecture Type Primary Role Strengths Challenges

YOLO (v3–v5) CNN, one-stage 
detector

Vehicle and 
plate detec-
tion

High speed, real-time 
performance

Struggles with small or 
distant objects

DeepSORT Kalman filter + 
CNN embeddings

Multi-object 
tracking

Robust to short-term oc-
clusion, preserves identity

Requires high-quality 
detectors, failures under 
long occlusion

CRNN CNN + RNN/
LSTM hybrid

License plate 
OCR

End-to-end recognition 
without segmentation

Sensitive to low-quality 
plate images

ResNet, VGG CNN classifiers

Vehicle 
attribute 
recognition 
(color, make, 
model)

Strong classification abil-
ity, transfer learning

Requires large, annotated 
datasets

CTC Loss Loss function
Sequence 
prediction 
training

Enables flexible sequence 
alignment

Requires careful hyperpa-
rameter tuning

Together, these algorithms form the backbone of an integrated ALPR+VAMR 
system, capable of high-accuracy detection and classification in real-world traffic 
conditions.

Edge vs. Cloud Implementation

A critical architectural consideration in intelligent traffic surveillance systems 
is the choice between edge and cloud computing for model inference and data 
processing. This decision directly affects performance, latency, scalability, and 
privacy.

In cloud computing architectures, processing is centralized on remote 
servers equipped with high-performance GPUs. This setup offers several 
advantages, including powerful computational capacity, seamless deployment 
of model updates, and the ability to aggregate and analyze large volumes of data 
for continuous system improvement. However, cloud-based approaches also 
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introduce notable drawbacks: transmitting high-resolution video streams to the 
cloud increases latency, makes performance dependent on network stability, and 
raises privacy concerns due to the handling of sensitive vehicle and personal data 
over the internet.

Conversely, edge computing performs inference locally, directly on-site 
through embedded devices such as NVIDIA Jetson or other AI accelerators. This 
approach significantly reduces latency, often to below 200 milliseconds, minimizes 
bandwidth consumption, and enhances data privacy, as sensitive information 
is processed locally rather than transmitted externally. Additionally, edge 
systems remain functional during network outages, providing greater resilience. 
Nonetheless, they face challenges such as limited computational resources, higher 
initial hardware costs, and the complexity of maintaining and updating distributed 
devices in the field.

To reconcile these trade-offs, a hybrid Edge–Cloud architecture has emerged 
as a practical and efficient solution. In this design, immediate tasks such as 
vehicle detection and basic classification are handled locally at the edge, while 
more resource-intensive processes—like advanced analytics, retraining, and long-
term data management—are offloaded to the cloud. This configuration effectively 
combines the low latency and privacy benefits of edge computing with the 
scalability and computational power of the cloud, providing a robust framework 
for modern, real-time traffic surveillance systems (Satyanarayanan, 2017).

Hardware Considerations

The performance of AI-driven traffic surveillance systems is heavily dependent on 
the underlying hardware infrastructure, as each component contributes directly 
to system accuracy, speed, and reliability.

At the foundation are the cameras, which serve as the system’s primary sensors. 
Their resolution, frame rate, and low-light sensitivity determine the clarity and 
usability of captured footage. Advanced features such as Wide Dynamic Range 
(WDR) allow effective monitoring in environments with varying lighting 
conditions, such as bright sunlight or deep shadows, while infrared (IR) support 
ensures continuous, 24-hour operation even in low-visibility settings. Equally 
important are Graphics Processing Units (GPUs), which accelerate deep learning 
inference and enable real-time performance for demanding tasks like Automatic 
License Plate Recognition (ALPR). Without sufficient GPU capability, system 
latency increases, reducing the effectiveness of live monitoring and rapid violation 
detection.

For edge-based deployments, embedded systems such as System-on-Chip 
(SoC) platforms, like the NVIDIA Jetson series or Google Coral Edge TPU—
offer a practical balance between power efficiency and computational capability. 
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These compact devices can process video streams locally, making them ideal for 
decentralized surveillance setups.

In addition, reliable storage and networking components are essential for 
maintaining data integrity. High-capacity local storage ensures temporary 
buffering and backup during connectivity interruptions, while stable, high-
bandwidth connections allow for smooth data transmission to central servers 
when needed.

In the context of Albania, where cost-effectiveness is a key concern, lightweight 
yet capable solutions are more practical than large-scale GPU clusters. Platforms 
such as Jetson Nano or Jetson Xavier provide robust performance at a fraction of 
the cost, making them ideal for pilot projects and early-stage system deployment. 
These configurations balance affordability and performance, enabling sustainable 
development of AI-based traffic surveillance across the country.

License Plate Recognition (ALPR) 
and Vehicle Attribute Recognition (VAMR)

Detection: Real time ALPR Systems Automatic License Plate Recognition (ALPR) 
involves the detection and identification of vehicle license plates within images or 
video streams.

The initial stage, License Plate Detection (LPD), aims to accurately locate the 
region containing a license plate. The overall performance of an ALPR system 
heavily depends on the precision of this detection. For traffic monitoring 
applications, real-time detection is essential, requiring a processing speed (FPS – 
Frames Per Second) that can match the video feed.

Real-world traffic scenarios present multiple challenges for plate detection. 
Variations in lighting, from bright sunlight to shadows or low-light conditions, 
affect visibility. Weather conditions such as rain, fog, or snow may obscure plates. 
Camera angles and distances result in varying perspectives and plate sizes, while 
high vehicle speeds can introduce motion blur. Partial occlusions caused by 
trailers, other vehicles, or dirt, as well as background textures resembling plates 
(e.g., advertisements or signs), can generate false positives.

Traditional LPD methods relied on handcrafted features such as vertical and 
horizontal edges, aspect ratios, and plate colors, using tools like Sobel and Canny 
edge detectors or Hough line transforms. However, modern real-time ALPR 
systems predominantly employ single-stage deep learning models, such as YOLO, 
which predict bounding boxes and classes in a single pass. Recent versions of 
YOLO (v5, v7, v8) offer device-specific variants and advanced training techniques. 
Models trained on local (Albanian) and international license plate datasets can 
achieve high-speed, accurate detection.
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FIGURE 2: Example of integrated driver detection  
and license plate recognition in a real traffic environment.

OCR for different international plate styles

OCR converts the cropped license plate image into an alphanumeric string 
representing the vehicle’s registration number. Plate formats vary considerably 
across regions. Some have a single row of characters, while others feature multiple 
rows. Fonts differ, with stylized or region-specific designs, often leading to 
confusion between visually similar characters (‘O’ vs ‘0’, ‘I’ vs ‘1’, ‘B’ vs ‘8’).

Character sets also vary: some plates use only uppercase Latin letters and 
Arabic numerals, whereas others include lowercase letters, special characters, or 
symbols from non-Latin scripts such as Cyrillic, Arabic, or Chinese. Background 
and character colors differ (e.g., black on yellow), which can assist in localization 
or recognition. Plate materials range from retroreflective to non-reflective, and 
security features such as holograms or watermarks may affect OCR accuracy.

Robust OCR models must handle these variations, combining image 
preprocessing, character segmentation, and classification techniques. Deep 
learning approaches, particularly convolutional neural networks (CNNs) and 
transformer-based models, have shown superior performance in handling fonts, 
layout, and color diversity. Additionally, integrating contextual rules, such as 
expected plate formats for a given country, enhances accuracy and reduces errors 
caused by ambiguous characters or low-quality images.

ALPR in the Albanian Context and OCR Using Deep Learning

In the Albanian context, ALPR systems must recognize both current and historical 
Albanian license plate formats, as well as a wide range of international plates from 
neighboring countries and beyond.

After license plate detection, Optical Character Recognition (OCR) typically 
follows a two-step process. First, character segmentation separates each character 
into individual regions. Next, each character is classified using techniques such 
as neural networks, support vector machines (SVMs), or template matching. 
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Traditional approaches are sensitive to errors caused by poor image quality, 
complex backgrounds, or closely spaced characters.

Modern deep learning models, particularly Convolutional Recurrent 
Neural Networks (CRNNs), provide effective solutions. CRNNs initially apply 
convolutional layers to extract visual features from the plate image. These features 
are then processed through recurrent layers, such as LSTMs, which capture 
sequential dependencies among characters. A specialized CTC (Connectionist 
Temporal Classification) loss function enables training without precise character 
segmentation, making CRNNs suitable for plates with varying lengths and layouts.

Training a CRNN for international plate recognition requires a large, diverse 
dataset encompassing plates from multiple countries and different formats. Data 
augmentation, including changes in image angles, lighting conditions, or artificial 
noise, enhances model robustness. Additionally, transfer learning can be applied: 
a model pretrained on a large, general dataset (e.g., plates from other regions) is 
fine-tuned on a specific dataset containing Albanian and other relevant plates.

Although most models are primarily trained for Latin letters and Arabic 
numerals, their architecture is flexible, allowing adaptation to recognize characters 
from other alphabets if needed. This approach ensures accurate recognition across 
a wide variety of plate styles, supporting robust ALPR systems in both national 
and international traffic monitoring contexts.

Handling Non-Standard and Multilingual Plates

ALPR systems often face challenges beyond standard plate formats. These include 
vanity plates with unusual characters or spacing, damaged or faded plates, and dirty 
or obstructed plates that reduce visibility. Other issues arise from intentionally 
altered, forged, or homemade plates, as well as special types like diplomatic or 
temporary plates with unique designs. Handling such variability requires adaptive 
recognition models and preprocessing techniques to maintain accuracy in diverse 
real-world conditions.

Effective handling of these plates requires a robust system capable of accurate 
detection and OCR. Deep learning models can learn from diverse examples; 
training datasets that include damaged or dirty plates improve system resilience. 
In cases of severe damage or manipulation, partial recognition may be possible, 
or the plate may be flagged as “unreadable” or “suspicious,” necessitating manual 
review or cross-referencing with vehicle data from VAMR. Some systems 
incorporate modules to detect signs of tampering.

Multilingual license plates add complexity to ALPR systems, as they may 
contain characters from different alphabets. While most European plates use the 
Latin script, some vehicles from the Balkans or Eastern Europe feature Cyrillic 
characters, requiring broader recognition capabilities. OCR models like CRNNs 
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can handle such cases if three conditions are met: the character set includes 
all relevant symbols, there is adequate training data for each alphabet, and the 
system effectively manages visually similar characters across scripts. A “universal” 
OCR model may cover all expected characters, or specialized OCR models can 
be applied for specific alphabets based on preliminary country identification. 
Modern systems use Unicode to uniquely represent all characters. This study 
focuses primarily on Latin letters and Arabic numerals while acknowledging 
broader multilingual challenges.

Environmental and Operational Challenges for ALPR

The performance of ALPR systems is heavily influenced by factors that degrade 
image quality or obscure license plates. Image noise is a common issue, arising 
from camera sensors (especially in low-light conditions), video compression, 
or adverse weather like rain and fog. High noise levels complicate both plate 
localization and character recognition. Techniques such as Gaussian or median 
filtering help reduce noise while preserving essential details, and training models 
on noisy images improves robustness.

Visual obstructions (occlusion) further challenge accuracy, as plates are often 
partially hidden. Common sources include vehicle parts (e.g., trailer hitches, 
misaligned decorative frames), external objects (nearby vehicles, pedestrians, 
bicycles, vegetation), and dirt or debris (mud, snow, leaves). Lighting conditions, 
such as glare from sunlight or deep shadows, can also distort visibility, making 
reliable recognition difficult. Addressing these challenges requires both 
preprocessing enhancements and robust, well-trained detection and OCR models.

FIGURE 3: Comparison between short-exposure  
and long-exposure frames for improved nighttime license plate detection.
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System capability to handle occlusion depends on the extent of coverage and 
algorithm sophistication. Modern detectors like YOLO can often locate a partially 
obstructed plate if distinctive features remain visible. When critical characters 
are occluded, full recognition may not be possible; however, some systems can 
perform partial reading or use contextual information to infer missing characters.

Nighttime conditions pose significant challenges for ALPR systems. Low 
ambient light reduces contrast and amplifies noise, while vehicle headlights and 
reflective plate surfaces can cause glare or overexposure. Motion blur from longer 
exposures further complicates character recognition.

To address these issues, infrared (IR) imaging or adaptive exposure techniques 
are employed. IR illumination enhances the contrast between characters and 
the plate background, improving detection and OCR accuracy. Successful 
implementation requires careful calibration of IR intensity and shutter 
synchronization. Additionally, including low-light and night-time images in 
training datasets helps models generalize better to these challenging scenarios.

FIGURE 4: License plate captures from stationary  
and moving vehicles using ALPR/ANPR technologies in real traffic environments.

Modern traffic surveillance combines multiple AI capabilities to enhance vehicle 
monitoring and identification. ALPR solutions like Open ALPR, Sighthound, 
Plate Recognizer, and DL-based YOLO+CRNN libraries vary in accuracy, speed, 
coverage, and ease of integration, providing options from open-source flexibility 
to high-accuracy commercial systems. When plates are unreadable, Vehicle Re-
Identification (Re-ID) complements ALPR by matching vehicles across cameras 
using CNN-based feature embeddings, handling challenges like changing 
viewpoints, lighting, and occlusions. Color recognition adds another layer of 
verification, often using HSV/HSL color spaces, SVMs, or CNNs, with a limited 
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set of color classes to ensure consistency under varying illumination. For deeper 
verification, Vehicle Make and Model Recognition (VMMR) classifies specific 
makes and models, overcoming intra-class variation and inter-class similarity 
through fine-tuned pre-trained CNNs enhanced with part localization, attention 
mechanisms, and multi-task learning, enabling simultaneous prediction of make, 
model, and color. Modern traffic surveillance increasingly leverages synthetic 
data to enhance AI performance. Tools like Unreal Engine, Unity, CARLA, and 
NVIDIA DRIVE Sim generate large, fully annotated datasets with controlled 
variations, while techniques like domain randomization and adaptation bridge 
the gap between synthetic and real images.

For real-time monitoring and event response, integrated ALPR/VAMR 
systems connect with databases from law enforcement, vehicle registration 
authorities, courts, and insurance companies. This enables immediate detection 
of unregistered or uninsured vehicles, cross-checking against Interpol lists, and 
linking vehicles to their violation history.

A robust system relies on secure and scalable infrastructure, including 
standardized RESTful APIs, encrypted communications (WebSocket, TLS 1.3, 
HTTPS), OAuth2 with MFA, and full audit logs. Cloud-native or hybrid platforms 
allow dynamic scaling during peak traffic hours. Advanced ALPR models, such as 
YOLOv5 combined with CRNN, trained on Albanian-specific datasets, achieve 
recognition accuracy above 95%, even under low-light conditions, ensuring 
reliable real-time performance.

Best practices worldwide

Successful national implementations exist in South Korea, Estonia, and the UK. 
London’s Smart Surveillance reduced vehicle-related crime by 30% .Estonia’s 
X-Road centralized violation management, cutting penalty issuance from 48 
hours to five minutes.

FIGURE 5: Improvement in plate-recognition accuracy  
using a 60 fps @1080p camera compared to a regular imaging sensor.
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For Albania, developing an effective AI-based traffic surveillance system requires 
both regulatory support and technological planning. Establishing legislation that 
allows ALPR-generated evidence to be admissible in court is a critical first step, 
ensuring that automated detections have legal validity. Simultaneously, creating 
an integrated road safety platform that connects the DPSHTRR, police, courts, 
and insurance companies would enable real-time data sharing and coordinated 
responses to traffic violations.

From a technological perspective, edge computing should be leveraged to enable 
faster, localized vehicle detection and reduce latency, particularly in high-traffic 
areas. Where authentic Albanian datasets are limited, the use of synthetic data can 
help train AI models, providing diverse and annotated images to bootstrap system 
performance. Together, these measures would lay a strong foundation for a robust, 
accurate, and legally supported traffic surveillance infrastructure in Albania.

Real-World ALPR/VAMR Pipeline Architecture

Designing an effective automated traffic surveillance system involves creating a 
pipeline architecture that integrates multiple components into a coherent workflow. 
The process begins with video stream acquisition, capturing footage from multiple 
cameras via standard protocols like RTSP. These streams are then decoded into 
individual frames and preprocessed—such as resizing or normalization—to 
prepare the data for AI models.

Next, vehicle and license plate detection localizes relevant objects in each 
frame, typically using models like YOLO. Detected vehicles are assigned unique 
IDs and followed across frames through multi-object tracking algorithms such 
as DeepSORT, ensuring temporal consistency. From these detections, Regions of 
Interest (ROIs) are cropped for specialized analysis.

Automatic License Plate Recognition (ALPR) processes cropped plate images 
using OCR models (e.g., CRNN with CTC loss) to extract alphanumeric strings, 
while Vehicle Attribute Recognition (VAMR) analyzes cropped vehicle images 
to determine attributes such as color, make, and model using CNN-based 
architectures. The outputs from ALPR and VAMR are then aggregated and 
verified, optionally cross-checked against databases for consistency.

For enhanced functionality, the pipeline can include violation detection, 
identifying stolen or wanted vehicles, speeding (via radar/LiDAR integration), 
traffic signal infractions, or illegal parking. The system then generates evidence 
packages containing images, videos, plate information, vehicle attributes, 
timestamps, and location data, sending real-time alerts when necessary. Finally, 
all data and metadata are securely stored in an organized fashion, supporting 
auditing, analysis, and long-term monitoring.
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This end-to-end pipeline ensures accuracy, efficiency, and reliability, providing 
a robust foundation for modern, AI-driven traffic surveillance systems.

FIGURE 6: Example of input video frame (top) and the corresponding detection  
and tracking output produced by the implemented ALPR pipeline (bottom).

Photo from the program executed by the code

Cost Analysis for Automated Traffic Monitoring Systems

Analyzing the costs and operational considerations of automated traffic surveillance 
systems requires evaluating hardware, maintenance, energy consumption, and 
integration capabilities.

Edge computing offers low-latency, real-time processing through devices 
like Google Coral Edge TPU or NVIDIA Jetson Orin NX, but deploying 
multiple monitoring points involves significant initial investment. Operational 
costs include energy consumption, regular maintenance, software updates, and 
hardware replacement. By processing data locally, edge devices reduce bandwidth 
usage and network congestion, sending only summarized outputs such as violation 
events, timestamps, and locations. Environmentally, edge computing can leverage 
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renewable energy sources like solar power—especially practical in sunny regions 
such as Albania—reducing reliance on energy-intensive cloud data centers.

Case studies demonstrate diverse implementations: Dubai uses AI-based 
ALPR for speeding and traffic safety monitoring; Singapore integrates ALPR into 
intelligent transport systems for traffic optimization and electronic road pricing; 
London applies ALPR extensively for congestion and low-emission zones, though 
high maintenance costs and privacy concerns remain challenges.

Integration with national databases and law enforcement systems is essential 
for maximizing system effectiveness. Linking ALPR outputs with the Vehicle 
Registration Database (VRD), such as Albania’s DPSHTRR, allows verification 
of ownership, insurance status, technical inspections, and vehicle attributes, 
facilitating automated fine issuance and detection of cloned plates. Connecting to 
police databases enables alerts for stolen or wanted vehicles, historical violations, 
and links to wanted persons, supporting rapid law enforcement intervention.

Key challenges in integration include the availability and standardization of 
APIs, data security and access control, performance and scalability, data quality, 
and establishing a legal framework for data sharing. Addressing these factors 
ensures that ALPR/VAMR systems operate efficiently, securely, and reliably while 
supporting law enforcement and traffic management objectives.

Data Storage and Security

Effective automated traffic monitoring systems require comprehensive data 
management and security strategies. Data retention policies should define how 
long information is stored, ensuring that unnecessary data is securely deleted or 
anonymized in compliance with legal requirements. Access control mechanisms—
authentication, authorization, and audit log—restrict data access to authorized 
personnel and track activity. Encryption protects sensitive data both in transit 
and at rest, while physical and virtual infrastructure security safeguards hardware 
and cloud environments. Techniques like anonymization and pseudonymization 
reduce privacy risks when data is used for analysis or model training. Predefined 
incident response plans ensure rapid mitigation of breaches, and ongoing 
personnel training reinforces secure handling practices.

Automated Violation Decision Support Systems (AVDSS)

AVDSS use advanced algorithms, such as Random Forests, XGBoost, and neural 
networks—to detect, classify, and respond to traffic violations, often achieving over 
95% accuracy. Components include violation detection, categorization by severity, 
and automated decision-making (issuing fines, alerting authorities, storing 
evidence). Visualization tools like GIS maps and temporal graphs support urban 
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planning, while machine learning techniques (supervised and unsupervised) 
predict risky behaviors and detect patterns. CNNs can visually identify dangerous 
driving, and continuous learning improves system performance over time. Key 
risks involve algorithmic bias, misclassifications, and overreliance on automation, 
highlighting the need for transparency, auditability, and human oversight.

Conclusion

AI-powered AVDSS enhances road safety, operational efficiency, and urban 
planning by accurately detecting and analyzing traffic violations. While challenges 
such as bias, complex data, and ethical concerns persist, continuous learning and 
human supervision ensure fairness and reliability. These systems not only enforce 
traffic laws but also contribute to smarter, safer cities.

Key Findings and Recommendations

•	 Transformative Potential of AI: Deep learning and computer vision models 
(YOLO, CRNN, CNNs for VAMR) provide high accuracy and speed for 
automated traffic monitoring.

•	 Integrated ALPR+VAMR Architecture: Combining license plate and 
vehicle attribute recognition improves reliability, especially when plates are 
unreadable.

•	 Real-World Challenges: Lighting, weather, occlusions, high speeds, and 
diverse plate formats require robust datasets, augmentation, and advanced 
models.

•	 Critical Role of Data: High-quality, diverse, locally annotated datasets are 
essential; their scarcity is a major barrier.

•	 Edge vs. Cloud Trade-offs: Edge computing reduces latency and bandwidth 
usage, while cloud systems enable centralized management and deeper 
analysis.

•	 Ethical and Legal Considerations: Privacy, accountability, and transparency 
are crucial; compliance with legal frameworks (e.g., GDPR) and ethical AI 
principles is mandatory.

Best Practices

•	 Modular and Integrated Approach: Building the system as interconnected 
modules (detection, tracking, ALPR, VAMR) while maintaining a coherent 
pipeline for optimal performance.
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•	 Advanced Models and Fine-Tuning: Leveraging pretrained models (YOLO, 
ResNet, CRNN) and fine-tuning them on task-specific, local datasets.

•	 Focus on Robustness: Training models to withstand variations in lighting, 
weather, occlusion, and vehicle/plate types using data augmentation and 
diverse datasets.

•	 Continuous Evaluation: Using appropriate performance metrics, benchmark 
datasets, and real-world testing to identify and address weaknesses.

•	 Hybrid Edge-Cloud Architecture: Edge processing for time-critical tasks 
and cloud for deep analysis and centralized storage.

•	 Privacy and Ethics by Design: Integrating ethical and privacy considerations 
early in system design.

•	 Interinstitutional Collaboration: Coordinating among police, transport 
authorities, and data protection agencies.

•	 Stakeholder Engagement: Involving the public, civil society, and domain 
experts to ensure acceptability and trust.

Recommendations for Albania

•	 Start with Limited Pilot Projects: Test technology in selected high-risk areas 
to collect context-specific data and assess effectiveness.

•	 Invest in Local Data Collection and Annotation: Develop large, diverse 
datasets of traffic images from Albanian roads.

•	 Adopt Open and Flexible Architectures: Use open-source, well-tested 
models that can be fine-tuned for local conditions.

•	 Prioritize Low Latency for Critical Applications: Use edge processing for 
rapid response tasks such as stolen vehicle detection.

•	 Develop Clear Legal and Ethical Frameworks: Update legislation to regulate 
AI-based traffic monitoring in compliance with GDPR and human rights 
standards.

•	 Strengthen Technical and Human Capacity: Train technical staff and law 
enforcement personnel for correct and ethical system use.

Future Research Directions

•	 Enhancing Robustness in Extreme Conditions: Develop ALPR/VAMR 
models resilient to snow, low light, or severe occlusions, possibly using 
multimodal sensors (visual, radar, Lidar).

•	 Few-Shot and Self-Supervised Learning: Enable recognition of new plate 
formats or vehicle models with minimal labeled data.

•	 Continual Domain Adaptation: Create models that adapt dynamically to 
environmental changes without full retraining.
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•	 Explainable AI (XAI) for Traffic Monitoring: Improve model transparency 
and interpretability to increase trust and facilitate error analysis.

•	 Advanced License Plate Forgery Detection: Detect subtle modifications or 
anti-ALPR materials.

•	 Vehicle Behavior Analysis: Use AI to predict risks and detect unsafe driving 
patterns beyond plate and attribute recognition.

•	 Optimization for Resource-Constrained Edge Devices: Develop energy-
efficient and low-cost deep learning solutions for edge deployment.

•	 Socio-Ethical Studies: Conduct empirical research on public perception, 
societal impacts, and context-specific regulatory frameworks.
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