
21

Increasing performance
in large capacity databases

Eliona SKENDERAJ
European University of Tirana

Abstract

The daily activity of companies is closely related to data. Databases are growing
and demand for data per unit of time is increasing and high performance is
required to meet this demand. Big data is a collection of large volumes of complex
data that exceeds the processing capacity of traditional database architecture.
They are also so difficult to administer and organize, and for this reason, the best
aim is to find the best and most effective solution. The purpose of this work is to
identify the main performance issues that appear while working with databases
with large capacities and to propose solutions for such cases. DBMS systems have
implemented techniques and tools that monitor data activity and help to improve
performance. One of the main directions that focuses on the work of the topic is
that of writing requests “query design” in such a way that regardless of the size
of the data required, these requests are not delayed and fail. The goal is that,
regardless of the proposed writing method, it provides recommendations that will
be practically applied in a data warehouse system. In this way, the benefit in
performance will be compared. In the end of this paper, it was possible to find
very effective and clear solutions.

Key words: Database, SQL, query, performance, large capacities

INGENIOUS No. 4, ISSUE 1/ 202422

Introduction

Nowadays data is everywhere. We are generating a large amount of data. The growth
of data is surprising in how deeply it affects businesses. For years, companies have
been using their transactional data to make informed business decisions. Decrease
in the cost of storage and computing power has made companies interested in
storing user-generated content in social networks, e-mail, sensors, photos, and
incoming message servers that can be used for information. useful. Traditional
database management systems, such as relational databases, proved to be good
for structured data, but in case of semi-structured and unstructured data it breaks
down. However, data comes from different data sources in different formats,
and most of this data is unstructured or semi-structured. Additionally, database
systems are also pushed to their storage capacity limit. As a result, organizations
are struggling to extract useful information from the unpredictable explosion of
data captured from inside and outside their organization. This explosion of data is
referred to as “big data”.

Big data is a collection of large volume of complex data that exceeds the
processing capacity of traditional database and data warehouse technologies do
not support billions of rows of data and cannot effectively store unstructured and
semi-structured data. From 2005 to 2023, the amount of information created and
copied in the world will increase by a factor of 300, from 130 exabytes to 40,000
exabytes (more than 5200 gigabytes for every man, woman and child) (IDC Digital
Universe, 2020). Big Data technologies describe a new generation of technologies
and architectures to extract economic value from very large volumes of wide
variety of data, enabling high speed capture, discovery and analysis. The McKinsey
Global institute estimates that data is growing at 40% for year and this percentage
will grow further. To address this challenge, we must choose an alternative way to
process data.

Google was the first that included MapReduce structure computing, The
Google File System (GFS), and closed distributed services. Amazon created a new
moment in the big data storage space. Over the past few years resource tools and
technologies including Hadoop, HBase, MongoDB, Cassandra, Storm and many
other projects have been added to the big data space.

Description of the problem

The fast growth and the complexity of data in various fields, such as
scientific research, business analysis and online platforms, has presented an

INGENIOUS No. 4, ISSUE 1/ 2024 23

important challenge in the efficient management and analysis of large-scale
data. To address this challenge, there is a need to explore ways to improve
the performance of data processing and analysis on big data platforms. The
problem that we are facing is to improve the performance of data operations
on large datasets. Traditional methods and tools often struggle to handle
the volume, velocity and type of big data, landing to problems such as slow
query speed, high latency, and dissatisfaction. As a result, organizations and
researchers face different types of problems such as problem in finding valid
notes and taking informed decisions. This problem requires the identification
of innovative techniques and strategies that can optimize the performance of
big data processing. Solutions may include advances in hardware infrastructure,
parallel computing, data sharing, indexing, and algorithmic optimizations.
Aim is to develop approaches that can effectively handle large data sets and
improve the speed and efficiency enabling users to obtain timely and accurate
results from their data analyses. The challenge to improve performance in big
data processing has consequences in different sectors. Improving efficiency in
data operations can empower business to get.

The aim of the work

The aim of this study is to propose techniques that increase the performance of
data warehouse systems.

If we look at the challenge of how to improve performance this is one of the
most important things in big data and that has important consequences in various
sectors. Improving efficiency in data operations can empower businesses to make
important decisions for their success.

Objective

The objective of this paper is to demonstrate that:

• The large size of database affects the efficiency of database.
• The large size of the database has a positive effect on increasing the speed

and the performance of databases.
• Improved performance of big data databases brings relief to complex statistic

reports that produce complex analysis for businesses with high data flows.
• There is a fair relationship between performance increases in large databases

with advances in technology.

INGENIOUS No. 4, ISSUE 1/ 202424

Hypothesis

The use of clustered index and non-clustered index increases the performance of
data warehouse systems.

Performance analysis of indexes in MSSQL Server

In this Fraction we will show the basics of MSSQL Server for using pages, B-tree,
clustered and non-clustered index. To show all of this we will use tempdb database
and create an index on the table.

Use tempdb Go
 -- B+ Trees në SQL Server
CREATE TABLE Indexing (ID INT IDENTITY (1,1), Name CHAR (4000),

Company CHAR(4000), Pay INT) .
This table has 4 columns defined, ID INT as a column and two data char 4000

with column names “Name” and “Company” in this particular table. This means
that we have one row, which is close to 8000 bytes. This ensures that each row is in
one page and a page cannot contain more than one row. This script is executed and
the table is created.

Definitions

SELECT OBJECT_NAME(object_id) TableName, ISNULL(name,OBJECT_
NAME(object_id)) IndexName, Index_Id, Type_desc FROM sys.indexes WHERE
OBJECT_NAME(object_id = we continue and we use sys.indexes DMVThis show
to us that table index is Heap. ‘Indexing’) GO

Let’s go ahead and use sys.indexes DMV. This tells us that the index of the table
is Heap.

FIGURE 1. SQL Server: Index Heap

INGENIOUS No. 4, ISSUE 1/ 2024 25

As we can see in the figure above, INT ID is zero. As we defined earlier if INT
ID is zero it means it is a heap.

To continue with the demonstration, we need to establish a condition: SET
NOCOUNT ON. No-count on is used to stop displaying messages for rows affected
by changes and this comes as part of the SQL Server Management studio output.

Let’s add some values to the table.
INSERT INTO indexing VALUES (‘Eliona’,’ Information technology ‘,10000)
Nodes will be created in this table. Now we use status check DMV which gives

us the opportunity to see object, type of indexes, levels, if it is root, intermediate
nodes and leaf node levels. We will also look at page count and fragmentation if it
is needed and this is given by the DMV of DB index physical status.

- Status check (DMV of DB index physical stats)
SELECT
OBJECT_NAME(object_id) Name,
Index_type_desc AS INDEX_TYPE,
Alloc_unit_type_desc as DATA_TYPE,
Index_id as INDEX_ID,
Index_depth AS DEPTH,
Index_level AS IND_Level,
Record_count AS RecordCount,
Page_count AS PageCount,
Fragment_count AS Fragmentation FROM sys.dm_db_index_physical_

stats(DB_ID(), OBJECT_ID(‘Indexing’), NULL , NULL , ‘DETAILED’);
GO

FIGURE 2. SQL Server: Indexing Types and Levels (DMV)

In this case you are seeing that the indexing of the table is heap and contains in
it ‘in row data’, which means it can fit within a page that’s why it’s inside the row.
It has a depth level equal to one and a record count equal to one. Later we will go
ahead and add two more rows to particular table.

INSERT INTO Indexing Values
(‘Arild’,’Manolia’,15000),
(‘Ardit’,’NetTrade’,13000)
GO
After adding the rows again, let’s check the status using the same DMV.

INGENIOUS No. 4, ISSUE 1/ 202426

FIGURE 3. SQL Server: Status check

We get the same data again, but the number of records has changed.
INSERT INTO Indexing
VALUES
(‘Albano’,’NetTrade’,11000)
GO 100

FIGURE 4. SQL Server: DMV with 100 additional records

Now we need to create a clustered index to not have again INDEX_ID equal to
zero.

- clustered Index
CREATE clustered INDEX CI_IndexingID ON Indexing (ID) GO

FIGURE 5. SQL Server: Creating the cluster index

What we notice is that in our table we have created an index of type clustered
index and it is defined in row data. In it we have index_ID equal to a Depth_level
equal to two. At IND_level equal to zero we have 103 records and the number
of pages is 103.To manage these 103 records we have another page, which has
these 103 records but on a single page. Intermediate root nodes and the root
node mentioned earlier is exactly what is being shown. This tells us so clearly the
structure of B-tree.

INGENIOUS No. 4, ISSUE 1/ 2024 27

Performance in Non-clustered Index

Non-clustered index is a special type of index that rearranges the way data is
recorded in the table. Therefore, the table can only have one cluster index.

FIGURE 6. Table with one cluster index

The DMV status check comes up with the non-clustered index in columns 4
and 5. It is interesting to note that it is slightly different from the clustered index.
You can see that the 803 records are stored on two pages, and we have one more
root page which stores two pages which store the 803 records on the page. Non-
clustered index stores only the key and not the data.

Conclusions

The increase of performance in databases with large capacities contains inside
many directions to make possible the increase in performance. Here we can
include hardware architecture construction, database architecture construction,
improvement technique from the smallest data to table level till up to database
level. The main purpose of this topic was to propose different ways of writing the
index, different techniques and developing controls, which when applied to a data
warehouse system bring an increase in performance. The first concept was that
of clustered index and non-clustered index. Clustered index means that a table is
physically stored according to the order of the specified index. While the concept of
non-clustered index is something different. Non-clustered index is a logical index
that tries to group according to a logical relation. The difference between them is

INGENIOUS No. 4, ISSUE 1/ 202428

that clustered index can be created just one time and non-clustered index can be
created so many times. At the end we conclude that: the indexes are absolutely
necessary for modeling and speeding up a database because of their architecture
in tree-form. The second concept was that of index performance maintenance.
This concept is related to index duplication, how it could be detected, and what
disadvantages it brought us. What this duplicated index brings is the anomalies
through which the database system would go, bringing a big loss in SQL Server,
problems in processing, causing poor database performance. The difficulty of
maintaining them is that SQL Server itself cannot prevent the re-creation of such
an index because you can create one with a different name.

References

Bernhardt, L.V. (2015). Data, data everywhere: Bringing All the Data Together for Continuous
School, second edition Improvement. Routledge.

Carter, P. (2011). Big data analytics: future architectures skills and roadmaps for the cio.
International Data Corporation.

Criticism, N. (2003). Data are Everywhere. Narrative Analysis: Studying the Development of
Individuals in Society, p. 63.

Dumbill, E. (2012). Planning for Big Data. O’Reilly Media, Inc.
Han, J., Haihong, E., Le, G., Du, J. (2011). Survey on NoSQL database.6th International

Conference on Pervasive Computing and Applications (ICPCA), pp. 363–366.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., and A. H. Byers, H.A.

(2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey
Global Institute, pp. 1–137.

Marz, N., & Warren, J. (2015). Big Data Principles and best practices of scalable realtime data
systems. First edition, Manning Publications.

Tripp, L.T. (2023). SQL Server: Indexing for Performance. Available at: https://www.pluralsight.
com/courses/sqlserver-indexing-for-performance

Randal, P. (2023). SQL Server: Index Fragmentation Internals, Analysis, and Solutions.
Available at: https://www.pluralsight.com/courses/sqlserver-index-fragmentation-
internals-analysis-solutions

Shashanka, M. & Giering, M. (2009). Mining Retail Transaction Data for Targeting Customers
with Headroom-A Case Study. Artificial Intelligence Applications and Innovations III, pp.
347–355.

