
110

Some model driven software
development approaches

MSc. Shaqir SULAJ1

Advisor: Prof. Dr. Petraq Papajorgji

Abstract

A model is a simplification of a reality, an abstraction, which neglects all of the
irrelevant aspects of a software and focuses on the ones which define the software.
Through modeling, we can visualize the software in a way which is understandable
from both computers and people. Unified Modeling Language (UML) is a
language, which stands in a higher level of abstraction than any programming
language and through it, we can build software models from the simplest to the
most complicated ones. However, even though through UML we are able to design
software’s and to generate a considerable amount of code, still we need to write
tons of lines of code in a certain object – oriented language. In order to be totally
independent from the execution environment and to focus entirely in business
logic as what really defines a software we need to go further. To achieve this goal,
the executable UML and state machines concept is introduced. “An executable
UML model is one with a behavioral specification detailed enough that it can
effectively be run as a program” (Seidewitz, 2011). Through executable model a
higher programmer productivity could be achieved and the system is not affected
by the year after year change in development technologies, which require that the
system to be upgraded each time there are changes in run-time environments. On
the other hand, through state machines we are able to simulate the execution of
a program through the model. Thus we can develop information systems using
1 Shaqir Sulaj is graduated in “Business Informatics” at the European University of Tirana in 2020.

In 2022, he is graduated from European University of Tirana in ‘Software Engineering”, profile “Data
management”. During his studies, Shaqir had his first working experience as Quality Assurance
Specialist in the private sector. From March 2022, he is part of the internal staff of Raiffeisen Bank
Albania as Software Developer at the IT Division.

INGENIOUS No. 1, ISSUE 2/ 2021 111

techniques which stand in a higher level of abstraction and platform independent
that can be translated in whichever specific platform of implementation.

Key words: model driven development, software, state machines, executable UML

The introduction

In the brief history of information systems, besides different approaches regarding
the analysis and development of these systems, we can all agree that the progress
in the field has been tremendous. All this innovation has been driven by the
continuous growing demand for systems which manage, save and handle the
massive data which are generated from our daily life activities. In order to develop
systems which, meet the user requirements effectively it is important for the system
to be specified correctly. A way to achieve this goal has been proven to be software
modeling. The model is a simplification of reality, which helps us have a better
understanding of our software. It serves as a blueprint for the further stages of the
software development. The most accurate tool regarding modeling is the Unified
Modeling Language. UML provides a modeling language which is understandable
from both humans and machines. Because the model it is organized visually in
diagrams and a considerable amount of code is generated directly from the model.

However, the model specifies the software from a static point of view and it
is still necessary to translate the model in a specific implementation platform to
represent the detailed behavior of our system. In order to escape this bottle-neck
the new executable UML it’s introduced. “An executable UML model is one with a
behavioral specification detailed enough that it can effectively be run as a program”
(Seidewitz, 2011). Another solution which supports expressing detailed behavior
in a model is the concept of state machines. In this paper, through the theoretical
analysis, but also through practical examples, the standard of the executable UML
and state machines will be explored.

Aims

This paper aims to represent the advantages that model driven development offers
in the software development industry. Thesis aims to:

a) To argue the way which executable model improves software development
processes.

b) To represent through concrete examples the benefits of software development
in a higher level of abstraction.

INGENIOUS No. 1, ISSUE 2/ 2021112

c) To argue how the model-based development increases programmers’
productivity in a dynamic software development market.

d) To reason how model driven development offers a link between business
requirements and programming languages.

Objectives

This paper objectives are:

1. Building two software prototypes based on a visual model which is easily
readable, modifiable and reusable using executable UML and state machines
technologies.

2. To emphasize the aspects in which developer’s productivity is improved
through all the stages of software development life cycle.

3. Developing an information system which is totally independent from
programming languages and translatable in each object – oriented
programming language.

4. To provide a documentation for the system which will be developed that
resists throughout time.

Analysis

Model Driven Architecture

As the name suggests, in the model driven architecture in the main scope of
development process; it is the model. On the contrary from model driven
architecture, the traditional software development passes through several stages
such as functional requirements analysis, feasibility analysis, design, coding,
testing and development. This process besides long, can be stressful and requires
a lot of working hours. The reason for this it is because it is necessary a journey
from the high level of functional requirements analysis to the technical low level
of abstraction, which is coding. “Models are the stepping stones on the path
between a description of a business need and the deployable runtime components
of its solution.” (Brown, Iyengar, & Johnston, 2006). “Within MDA the software
development process is driven by the activity of modeling your software system”
(Kleppe, Warmer, & Bast, 2003).

INGENIOUS No. 1, ISSUE 2/ 2021 113

The benefits of model driven architecture

Taking into consideration the commercial success of programming languages and
frameworks based on them, it is fair for one to think, which are the benefits of
model driven architecture? In this type of architecture, we have two main benefits,
which are productivity and portability. This approach is more productive since
a model which is independent form the implementation platform avoids the
development technicalities embeded in a specific platform and it is focused on
developing solutions for business requirements. The other benefit, portability
makes it possible that a system based on the platform independent model to be
translated in every platform specific model. Furthermore, the translation into
a PSM, it is much faster and feasible, since a considerable amount of code it is
generated automatically from the platform independent model. “The main idea in
MDA it is building detailed enough models and to use transformations to generate
the most part of the code” (Starr, 2002).

Model Driven Development

Model driven development includes several processes, which start from creating
a model to delivering an executable code. “MDD is primarily concerned with
reducing the gap between problem and software implementation domains through
the use of technologies that support systematic transformation of problem-level
abstractions to software implementations.” (France & Rumpe, 2007). According
to this approach, model driven development is a series of transformations, which
have as an input a model and as an output another more detailed model, until the
software implementation is achieved. For example, if we want to design a software,
firstly we have to define the objects which will be part of the model and also, we have
to define the state and behavior of these objects. Furthermore, model after model,
the state and behavior of the object becomes more and more detailed, to the point
which the information system it is completely developed based on the model. “The
benefits of adopting MDD include reduced software development time, enhanced
code quality, and improved code maintenance.” (Chao, et al., 2006). On the
other hand, another important aspect of the model driven software development
approach, it is the process of model driven software testing. “Model Driven Testing
is an approach based on MDD in which tests can be generated from development
models in an automated way through the use of transformations” (Baker, Rai,
Grabowski, Haugen, & Williams, 2008). Imagine a software development process,
which goes through all the stages of software development life cycle. The modeling
process it is right after functional requirements analysis, meanwhile testing

INGENIOUS No. 1, ISSUE 2/ 2021114

according to the traditional method of testing is a step before deployment. If it
is the case that in testing serious issues are identified regarding business logic of
the information system, there would be unimaginable consequences of wasted
working hours and resources. MDT approach mitigates this problem by testing the
software based on the model, which is developed.

Executable UML

In the model driven architecture there are two main behavior modeling approaches.
One of these is elaborationist approach, which uses formal languages to manage
the definition of object’s behavior.

“The second approach is referred to as translationist; the complete system should
be defined within the PIM.” (Papajorgji & Pardalos, 2016). “In the elaborationist
approach, the definition of the application is built up gradually as you progress
through from PIM to PSM to Code.” (McNeile, 2003). In order to make this work
“in 2008, this led to the adoption of the Foundational UML (fUML) specification,
providing the first precise operational and base semantics for a subset of UML
encompassing most object-oriented and activity modeling” (Seidewitz, 2011).
However, this was still not enough to support full specification of object’s behavior
in an UML diagram. To properly define the methods through which objects would
operate and implement their behavior, you would have to draw detailed activity
diagrams, which take a lot of time and effort and they are not effective. So, it
became necessary to apply a language for objects interaction and this language was
Action Language for fUML or Alf.

“Alf is basically a textual notation for UML behaviors that can be attached to a UML
model any place that a UML behavior can be. For example, Alf text can be used
directly to specify the behaviors of a state on a state machine, the method of an
operation or the classifier behavior of an active class. Further, the “extended” Alf
notation actually includes some basic structural modeling constructs, so it is also
possible to do entire models textually in Alf ” (Seidewitz, 2011).

Since, semantically Alf marks a subset of fUML, the last one could me interpreted
as an execution environment for Alf. “The goal is to make UML modeling executable
modeling, to allow designers to test and verify early and to generate 100% of the
code if desired.” (Sunye, Pennaneac’h, Ho, Guennec, & Jezequel, 2001). “Indeed,
the real power of executable modeling going forward relies on keeping the entire
behavioral specification at such a higher level of abstraction.” (Seidewitz, 2011).

INGENIOUS No. 1, ISSUE 2/ 2021 115

State machines

According to object-oriented paradigm, an object it is characterized from two
significant components, which are state and behavior. To bring in memory, state it
is one of the many situations in which an object might find itself, as for behavior
it represents how an object behaves and reacts to other objects requests. So, we
could say that the state of an object it is a static view of an object defined at a
certain moment, meanwhile the behavior includes all the dynamics, which affect
the state of the object or which the object affects other object’s state. But how the
change of these states happens, which are the situations which trigger the process
of changing the state of an object? To get an answer we need to include the concept
of state machines. “A state machine is a behavior that specifies the sequences of
states an object goes through during its lifetime in response to events, together
with its responses to those events.” (Booch, Rumbaugh, & Jacobson, 1999). Events
which trigger the change of a state might include signals, method calls or time
passage. Depending from the happening of the events, an activity will be triggered,
which will affect the actual state of the object. Activity represents an action, which
impacts the state of an object.

Simulation

Executable UML prototype

In order to create a better understanding of the executable UML standard, I will
be demonstrating and executable UML diagram. This example will represent an
e-commerce executable class diagram as it is shown below:

FIGURE 1. Class Diagram of E-commerce system

INGENIOUS No. 1, ISSUE 2/ 2021116

After the design of the class diagram for the e-commerce system, next we
will execute the model in the UML Almighty environment. UML Almighty is a
runtime environment specialized for the UML executable standard. In order to
run the program, we have to define a class which will serve as a reference for the
executable UML prototype. In this study case, since the center of activity is the
Customer class, will serve as a reference to execute the application. In the picture
below, it is displayed the initialization of Customer class:

FIGURE 2. Customer class instance

Using the powerful abilities of simulation in the UML Almighty, it is possible
that right after we design the model, to be able to create class instances. All this,
without having to select as PSM environment and without entering in technical
details of a specific development platform. The standard of executable UML
provides us with a prototype if the e-commerce system, in which we can test the
dynamic aspect of UML model. This ability is quite beneficial because “studies
show that modelers, often create models that do not quite reflect how the system
will behave” (Farah & Lethbridge, 2007).

However, as it is known, the class diagram’s goal is to address the static point of
view of a system. So, how can we address the dynamic aspect of our e-commerce
system, keeping in mind that UML diagrams are not detailed enough to define
behaviors and operations which characterize objects. In order to make this
happen, we will be using an action language which does the detailed specification
of operations.

INGENIOUS No. 1, ISSUE 2/ 2021 117

Customer : = Customer newInstance.
Customer initialize.
Customer name : ‘John’.
Customer deliveryAddress : ‘Westminister 1’.
Customer phone : ‘464356345’.
Customer registeredAt : ‘27/06/2022’.
Action Language for UML Almighty it is similar to pseudocode and it is high

level language close to the human logic.
After the creation of a client, the next step into the execution of the e-commerce

system prototype it is the login. In order to login, we have to define a class, which
will serve as a login manager, much or less like the class which contains the public
static void main() method in object-oriented languages such as Java or C++.

FIGURE 3. Defining login manager class

Customer class will serve as a main class to our system and now we are ready to
test the client’s account created earlier. UML Almighty provides two options for the
executable UML prototype, one is web based and the other desktop based. In this
study, it is used the desktop prototype, in which the user through his account will
be able to login, choose products, create orders and make payments.

FIGURE 4. Login

INGENIOUS No. 1, ISSUE 2/ 2021118

After the login, the customer data will appear in the profile:

FIGURE 5. Client profile

The client,, in this menu has the possibility to revise his data like name, address,
phone number and registered date. The number of data attributes which could be
saved for a client is limitless, however for the sake of this simulation only the most
esential data are saved. Also, the client can change his data at anytime.

Another functionality of the e-commerce system is adding orders. This feature
is set in the Order menu as shown below:

FIGURA 6. Orders

The Order menu displays the data like id, status, creation date, to create orders
the script below it is used:

Order : = Order newInstance.
Order initialize.
Order OrderId : ‘abc123’.
Order OrderStatus : ‘created’.
Order CreateDate : ‘27/06/2022’.
Customer class has a 1 x N relationship with Order class, thus an instance of

Customer class, a client has a collection of objects or instances of Order class. In
order to create the relationship between the client and his order we have to use the
action language as below:

Customer add : Order.

After the order is created, we add products into the order. Products are
instances of Item class and hold the necessary information for each product in the
e-commerce system. Products are related with orders in a 1 x N relationship, where

INGENIOUS No. 1, ISSUE 2/ 2021 119

in an order we might have many products, while a unique product it is only in an
order. In the example, we have the menu which displays the product information:

FIGURE 7. Products

This order products store the data for the product id, description, weight. We
shall use the script below for adding these products:

Item : = Item newInstance.
Item initialize.
Item Id : ‘r34r3’.
Item Description : ‘Cool Sunglasses’.
Item Weight : ‘200’.

Item : = Item newInstance.
Item initialize.
Item Id : ‘3435’.
Item Description : ‘Iphone’.
Item Weight : ‘300’.

These product instances shall be added to the order:
Order add : Item.
The other use case to be specified it is the payment process in the e-commerce

system. Payments will be executed in the related menu where information
regarding payment method, payment id, payment date and amount will be stored.
Each payment it is made for a certain order since we specified in the model that the
relationship between payment and order it is 1 x 1 and different payment methods
are implemented using the polymorphism principle with an interface.

FIGURE 8. Payment

INGENIOUS No. 1, ISSUE 2/ 2021120

From the UML model execution, we can realize that the model is designed
correctly and the information system behavior is according our expectations.
E-commerce system simulation was achieved in less time using a low code approach.
The simulation through the executable model has the advantage of discovering
errors of the solution design since in the beginning and this helps reducing costs
which come from an incorrect modeling of the system. In addition, a model driven
developed system lets us focus more in the business logic rather than in the specific
implementation platform. Coding itself, in whichever programming language it is
just a tool which helps us to build software. The key in offering a reliable solution,
universal and promising to resist in time it is to focus in the business logic. That is
the aim of the executable model, to shift the focus in problem solving and not in
the thousand different ways there are to solve them.

State machines prototype

For the state machine prototype, a solution design it is implemented, which will
serve as a model for Video Player embedded system.

FIGURE 9. State machines simulation

After the design of the state machines model for the Video Player, the model
will be transformed into an executable state machine. In the Enterprise Architect’s
menu, in the Develop tab, button Generate allows us to generate the code for the
executable state machine in several object-oriented languages such as C#, C++
or Java. After the code is generated, we select the option start simulation. In the
moment that the DVD is Unloaded we could choose the event DVD Load to put
the DVD inside the Video Player.

INGENIOUS No. 1, ISSUE 2/ 2021 121

FIGURE 10. Begin Simulation

As we can see in the simulation menu at the moment in which we begin the
simulation of the state machines, we can track the execution flow and as soon
as we start the simulation we transit to the initial state DVD Unloaded. When
we click Load, the code generated in Java is responsible for the transit between
states process. The logic in the code uses three main concepts in state machines
which are states, transitions and signals. The Java code stores an enumeration of all
states and transitions which are specified in the diagram and generates a respective
method for each transition between the states.

private void DVDUnLoaded__TO__DVDLoaded_2221 (Signal signal,
StateData submachineState) {

 if (m_StateMachineImpl == null)
 return;
 if(!m_StateMachineImpl.GetStateObject(

submachineState,StateEnum.DVDPlayer_ENUM_STATEMACHINE_
DVDUNLOADED.ordinal()).IsActiveState()){

return;
}
S t a t e P r o c (S t a t e E nu m . DV D P l ay e r _ E N U M _ S TAT E M AC H I N E _

DVDUNLOADED, submachineState, StateBehaviorEnum.EXIT, null);
DVDUnLoaded__TO__DVDLoaded_2221_effect(signal);
m_StateMachineImpl.currentTransition.SetActive(m_StateMachineImpl);
 StateProc(StateEnum.DVDPlayer_ENUM_STATEMACHINE_

DVDLOADED, submachineState, StateBehaviorEnum.ENTRY, signal,
EntryTypeEnum.DefaultEntry);

}

The method above takes as parameters the signal or the event which initiates
the transition process and the data of the actual state. If the implementation of the
state in a state machine is not initialized, the method does not continue any further
with the execution of the transition process. If the actual state of the state machine,
it is not active again the execution comes to a halt. If the simulation process passes

INGENIOUS No. 1, ISSUE 2/ 2021122

those conditions the method calls the actual state and the method which executes
the transition process using the signal as a parameter which triggers this process,
which in our case it is the Load button. This way the state machine completes a full
transition of state from DVD Unloaded to DVD Loaded. So on and so forth, other
transitions between states and sub-states continue to happen over and over again
through the life cycle of an object.

Conclusions

Conclusions

Through this paper, secondary sources analysis and simulation through the prototypes
of executable UML class diagrams and state machines, it was concluded that:

• Model driven development supports software development in a manner
which is fast, accurate and independent from the implementation platform.
This development approach shifts the focus from the specific platforms
of implementation and emphasizes the business logic as the backbone to
provide an efficient software solution.

• Model driven development approach increases the developer’s productivity
since the model creates a better understanding of the system which is being
developed and a considerable amount of code it is generated quickly and
accurately directly from the model. Furthermore, information systems
which are built according to PIM methodology are universal and portable
from the platform point of view. This means that a model driven developed
system can be implemented in whatever specific platform which is required.

• The executable UML model supports software testing right after the model is
designed, giving the opportunity to verify if the information system behaves
as expected since in the early stage of development. This advantage reduces
costs, mitigates errors in development and increases the development
process efficiency.

• Model driven development creates a precise, whole and understandable
documentation of the information system. Because this approach provides
us with a model which visualizes in details each functionality of the system,
hence offers a valuable documentation.

Suggestions

Taking into consideration the potential and benefits which derive from model
driven development, which were evidenced throughout this study and the

INGENIOUS No. 1, ISSUE 2/ 2021 123

simulations of the prototypes of executable UML and state machines, some of the
suggestions recommended are:

• Applying model driven development approach as a standard practice in
every project which includes software development.

• Researching the usage of editors, which support executable UML and the
expansion of their capacities to build and execute models with detailed
enough behavior to be ran as a program.

• Developing software which are independent from the implementation
platform in a higher level of abstraction from the programming languages of
our present. As Booch said, the idea of developing software in C++ or Java,
in a near future will sound as absurd as it is nowadays to write an application
in assembly.

Bibliography

1. Baker, P., Rai, Z. D., Grabowski, J., Haugen, O., & Williams, C. (2008). Model-Driven Testing
Using the UML Testing Profile. New York: Springer.

2. Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language, User Guide.
Addison Wesley.

3. Brown, A. W., Iyengar, S., & Johnston, S. (2006). A Rational approach to model driven
development. IBM SYSTEMS JOURNAL, 463-480.

4. Chao, T., Chen, S.-k., Dikun, M., Lei, H., Jeng, J.-J. (., Kapoor, S., . . . Zeng, L. (2006). Model
Driven Development for Business Performance Business Performance. IBM SYSTEMS
JOURNAL, 587-605.

5. Farah, H., & Lethbridge, T. (2007). Temporal Exploration of Software Models: A Tool Feature
to Enhance Software Understanding. WCRE 14th Working Conference on.

6. France, R., & Rumpe, B. (2007). Model-driven Development of Complex Software: A Research
Roadmap. IEEE.

7. Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven Architecture :
Practice and Promise. Addison Wesley.

8. McNeile, A. (2003). MDA: The Vision with the Hole? . Retrieved from www.metamaxim.
com: http://www.lcc.uma.es/~av/MDD-MDA/publicaciones/P_7MDA-the%20vision%20
with%20the%20hole.pdf

9. Papajorgji, P. J., & Pardalos, P. M. (2016). Software Engineering Techniques Applied to
Agricultural Systems, An Object-Oriented and UML Approach, Second Edition. Springer.

10. Seidewitz, E. (2011, January 19). https://modeling-languages.com/new-executable-uml-
standards-fuml-and-alf/. Retrieved from https://modeling-languages.com/: https://
modeling-languages.com/new-executable-uml-standards-fuml-and-alf/

11. Starr, L. (2002). Executable UML: How to Build Class Models. Prentice Hall.
12. Sunye, G., Pennaneac’h, F., Ho, W.-M., Guennec, A. L., & Jezequel, J.-M. (2001). Using UML

Action Semantics for Executable Modeling and Beyond. Springer.

	ingenious 1-2, kopertina
	ingenious 1-2
	Software development
	using design patterns
	MSc. Aurela Kallja

	Technical aspects of water supply
	and sewerage in Shkodër
	MSc. Ing. Dajana Arrtunda

	ERP Systems in business function
	Management of fixed assets and contracts modules in Microsoft Dynamics 365 Business Central
	MSc. Emanuela Maraj

	Development of Tirana’s road infrastructure after the 1990s
	MSc. Ing. Iva Josifi

	Study on the integrated use of photovoltaic plants (pvt) for the production of electrical energy and heat using heat pumps (pn-pt)
	MSc. Ing. Luciano Zefi

	Designing and implementing
an information management system
for a non-public educational institution
	MSc. Megi DUÇI

	Some model driven software development approaches
	MSc. Shaqir Sulaj

