
7

Software development
using design patterns

MSc. Aurela KALLJA1

Advisor: Prof. Dr. Petraq Papajorgji

Abstract

Information systems have become an integral part of our lives. The demands for
software that help us accomplish our daily tasks are ever increasing, considering the
great technological momentum around the globe. Software engineering is the process
of analyzing user requirements, designing and developing software applications. Each
user request is a problem that an individual or a business has encountered in the daily
work processes.

The goal of software engineering is to provide an optimal and efficient solution
to these problems to increase the overall productivity of employees in the respective
industries and at the end of the day, to increase profits. Providing these solutions is
no easy feat, as the problems are often complex and in addition to requiring careful
analysis, they also need smart solutions. Fortunately, we have the ability to learn
from experience and apply our knowledge in different contexts to achieve our goals.
As in any field of life, problems have a recursive nature and it often happens that
the same problem is encountered in different contexts. Naturally, we can think that
similar problems have similar solutions. The set of solutions to general software design
problems in a specific context constitutes what are called design patterns. Design
patterns are structures of how some objects dialogue with each other to provide a
specific solution to a problem. They are ready-made solutions to known problems,
1 Aurela Kallja has a background in both economics and computer science. In 2020, she is graduated

in “Business Informatics” at the European University of Tirana. In 2022, she is graduated from the
European University of Tirana with a Master of Science degree in “Software Engineering”, profile
“Data management”. During her studies, Aurela demonstrated a passion for technology and a strong
drive to learn, as evidenced by her completion of a “Java” course at SDA, where she acquired valuable
programming skills. Currently, she is working online as a QA testing engineer.

INGENIOUS No. 1, ISSUE 2/ 20218

and the real challenge with them is not in their construction, but in the intuitive
ability to associate a design problem with the corresponding pattern that offers the
most optimal solution. This paper will deal with the development of an information
system for an ATM Exchange system, which carries the functionalities of an ATM
cash machine and exchange rate chart. The development of this software will be
totally based on design patterns, more specifically “Observer” pattern and “Chain of
responsibility” pattern. This paper aims to emphasize the advantages of using design
patterns and highlight the potential of them to solve general problems in a specific
context. It also focuses on software engineers, information systems developers and
software engineering students. This paper will serve as a manual of best software
development practices, emphasize the principles of flexibility and reusability of
information systems development components.

Key words: ATM, design patterns, exchange rate, software engineering, system,
OOP.

Introduction

Information systems have significantly improved the productivity of human activity
from the moment of their appearance until today, when it is difficult to imagine
any area of life without software systems that make everything easier. Nowadays,
software systems have been perfected so much that with their help, processes that
were impossible to carry out a few decades ago, nowadays can easily be carried out.
All this thanks to the improvement of software development techniques, driven by
the need to provide solutions for problems of complex natures because, the more
complex the problem, the more complex is the provision of adequate solutions. As
each problem is specific in its nature and requires a specific software solution in
order for the information system to meet expectations.

The science that deals with the study and analysis of requirements for a certain
software development problem, the design and development of solutions is known
as software engineering. In software engineering “Design patterns are descriptions
of communicating objects and classes that are customized to solve a general design
problem in a specific context.” (Gamma, Helm, Johnson, & Vlissides, 1994).

Design patterns enable us to solve complex problems in a fast and efficient way
with the guarantee that the solution has been tested and proven thousands of times
throughout the history of software development and has proven to be efficient.

“Each pattern describes a problem that occurs repeatedly in our environment, and
then describes the essence of the solution to this problem, in such a way that this

INGENIOUS No. 1, ISSUE 2/ 2021 9

solution can be used a million times, without ever doing it the same way twice.”
(Alexander, 1977)

A design pattern names, abstracts, and identifies key aspects of a common
design structure, making it useful for creating reusable object-oriented designs.
These models identify the participating classes and instances, the role and
relationships between them, and the distribution of responsibilities. In this paper,
in addition to the theoretical elaboration of how design patterns work and how
developers benefit from them, an information system based on design patterns,
specifically “The Observer” pattern and “The Chain of responsibility” pattern, will
be developed.

1.1 Purpose

Some of the goals of this paper are:

• Introducing an information system based on the principles of object-oriented
programming. More specifically, the aim is to build an ATM cash machine
system, using “The Chain of responsibility” pattern, and “Observer” design
patterns.

• To represent the facts which state that design patterns are the optimal solution
for the problems that are often encountered in an information system and to
implementation them correctly.

• By enabling an efficient interaction for the user, the ATM and the system
administrator, I will aim to develop a service that is characterized by:
transparency, security and simplicity of use of the solution provided.

1.2 Objectives

The objectives that I intend to reach at the end of this paper are:

• Creating a model through the application of a set of explanatory and heuristic
principles.

• Understanding a problem in details in terms of its processes and concepts,
through the study and application of the information and techniques
presented.

• Creation of an information system using design patterns, such as Observer
and Chain of Responsibility patterns.

• Designing a solid solution through the use of Object-Oriented Programming
principles.

INGENIOUS No. 1, ISSUE 2/ 202110

1.3 Methodology and results

The software industry is a fast-paced field and innovation is at a crazy pace
compared to other industries. As in any other industry, the key to success is the
ability to innovate before anyone else. Based on these indications, we assume that
a commercial bank intends to launch ATMs that, in addition to playing the role
of cashier, also provide information and functionality related to the exchange rate.
Such a system, which is offered for the first time, should be able to provide citizens
with real-time teller services that include managing their money, withdrawing
money at any time as well as information on the exchange rate in every moment.
The system must be flexible, update data in real time with exchange rate changes
in international exchanges market, as well as support the removal or addition of
new currencies, the creation and updating of accounts in different currencies, and
updating the current status of ATMs.

Elaboration

2.1 Development of the model by means of UML

Based on the requirements, the system will be developed using abstraction to define
the concepts that participate in the ATM Exchange system. The design of UML
software model has been carried out too. The purpose of using the model is to get
a good understanding of the system that will be built. The three models that were
used to design the ATM Exchange software are Use case diagram, Class diagram
and Sequence diagram. Model development, in addition to creating a visualization
of the developing system, helps us generate a significant amount of code correctly.

2.2 Use Case Diagram

To create a software product, the developer must know how the user will interact
with the application. This is where we need the Use Case diagram. A Use Case
Diagram summarizes the details of the users and their interaction with the system.
It specifies the expected behavior of the system (what?), rather than the exact
method of achieving it (how?). A key concept of using these diagrams is that they
help create a system from the end user’s perspective. It is an effective technique for
communicating system behavior in user terms by specifying all externally visible
system behavior.

INGENIOUS No. 1, ISSUE 2/ 2021 11

“Use Cases represent only the functional requirements of the system. Other
requirements, such as business rules, quality of service requirements, and
implementation constraints should be represented separately, with other UML
diagrams.” (What is Use Case Diagram?, 2022).

USE CASE DIAGRAM

The ATM Exchange software system contains two main actors: the user and the
administrator. The user or rather the client has the functionality of logging into the
system and then he can perform a series of operations. These operations include:
checking the balance in real time, withdrawing money and obtaining information
on the exchange rate. Another important actor is that of authentication. The
authentication actor plays an important role in validating the credentials that
are inserted into the system. This functionality serves both the client and the
administrator and is a key factor that ensures the security of the information
system.

The administrator is another actor, who has associated several use cases in the
ATM Exchange system. The administrator can log into the system and after his data
goes through the authentication process, he has a series of menus available, which
include account management, ATM management and exchange rate management.

Account management involves adding new accounts to the system for new
customers, updating account information of existing customers, and finally
deleting the accounts of customers who are no longer served.

ATM management includes adding new currencies, updating existing currencies
and deleting currencies that are no longer serviced by the system. Another use case
of the administrator, which contains several sub-cases, is currency management.
This use case includes adding a currency rate, updating a currency rate, and
deleting a currency rate.

INGENIOUS No. 1, ISSUE 2/ 202112

2.3 Class Diagram

A class diagram is used to address the static view of a system, the relationships
between classes, and how concepts relate to each other to form the whole, which is
the system being built.

“In software engineering, a Class Diagram in UML represents a type of structural
diagram that describes the structure of a system by showing the system’s classes,
their attributes, methods, and relationships between objects.” (What is Class
Diagram?, 2022)

CLASS DIAGRAM

There are eight classes and two interfaces that participate in the information
system, which have been defined based on the analysis of abstraction. The main
class in the UML diagram of the system, which plays the role of the main class
in the information system, is the ExchangeAtmFrame class, which has navigable
association with the two interfaces, the Observer and the DispenseChain. The
Observer interface is implemented by three classes BaseRate, BuyRate and SellRate.
In this class diagram we have two pure uses of the principle of polymorphism
implemented through the use of interfaces, which is a very powerful feature of
object-oriented programming and the Java language in particular. The three
classes BaseRate, BuyRate and SellRate realize a polymorphic implementation of
the Update() method defined in the interface. But polymorphism is not limited
to the implementation of a single method. The DispenseChain interface is
implemented by four classes that are Currency100dispenser, Currency50dispenser,
Currency20dispenser, Currency10dispenser, which implement the two methods
defined in the DispenseChain interface: setNextChain() and dispense().

INGENIOUS No. 1, ISSUE 2/ 2021 13

2.4 Sequence Diagram

The sequential diagram shows the execution of the system based on user cases,
but in chronological order. In simple words, the sequence diagram represents user
cases by the time they occur.

“A sequence diagram represents the objects that participate in the interaction in a
timely manner. The timing of when messages are sent to objects is important and
changing this order can lead to unexpected results.” (Petraq J. Papajorgji, Software
Engineering Techniques Applied to Agricultural Systems, An Object-Oriented and
UML Approach, 2014)

Figure below shows the sequence diagram of the ATM Exchange software.

SEQUENCE DIAGRAM

INGENIOUS No. 1, ISSUE 2/ 202114

2.5 Design Patterns used in system development

The development of the ATM Exchange system is based on object-oriented
programming technology. This object-based approach presents an information
system as a community of objects that are in constant communication with each
other with the goal of fulfilling the functions that the system has. The interaction
between objects is realized by the behavior of each object and through the impact
that the behavior of each object has on itself or on other objects, it affects the state of
the object. The interaction of objects between each other adheres to a structure or a
pattern. From here we come to the concept of design patterns, which are structures
that represent the way objects interact with each other to provide solutions to a
general problem in a specific context. So, if the information system is a bunch of
objects that communicate together, a design pattern describes the flow of execution
of this communication that coincides with the solution of a certain problem. In
the development of the ATM Exchange system, two general design problems were
identified, which were solved using the Chain of responsibility pattern and the
Observer pattern. In the next subsection, it will be explained how these patterns
are implemented in the system and why exactly these patterns were chosen.

2.6 Chain of responsibility as a pattern for ATM functionalities

One of the functional requirements of the software we are developing is the
functionality of an ATM cash machine. But what is the role of an ATM cash
machine? Most of us, have had the opportunity to use an ATM to withdraw money
or check the balance in our account. The balance check process is a simple read-
only process. While ATM withdrawal is a functionality which enables the user
to provide an amount to withdraw and withdraw it. But since it is an automatic
service, there are some restrictions, the two main ones being that the amount must
be a multiple of ten and the withdrawal is made in regular denominations that
include tens, twenties, fifties and hundreds. The system calculates the amount and
determines the deductions the user will receive. The selection of denominations
is determined based on the amount given by the user and the availability of
denominations in the ATM. This determination occurs through the design pattern
of the chain of responsibility.

“Chain of responsibility avoids piling up requests to one receiver by giving more
than one object the opportunity to manage the request. It creates a chain between
receiving objects and passes the request along the chain until an object handles it.”
(Erich Gamma, 1994).

INGENIOUS No. 1, ISSUE 2/ 2021 15

Figure below shows the UML diagram of the “Chain of Responsibility” design
pattern for the ATM Exchange system. This diagram consists of an interface that
has two methods defined, one for passing request management from one object of
the chain to another, and another that performs request management.

CLASS DIAGRAM OF THE CHAIN OF RESPONSIBILITY” PATTERN

As shown in the figure, the chain consists of four objects, which are responsible
for managing requests to the object chain. In this case we have a chain, which has
one object for each denomination. Now, the user makes a withdrawal request with
a certain amount, if the amount is above the value of 100, the chain starts from 100
and passes in turn to the objects of other values until the withdrawal amount is met
and the chain ends.

2.7 Observer as a pattern for exchange rate charts

Another functionality of the ATM Exchange system is the real-time display of
the exchange rate. The exchange rate represents the trading percentages between
different currencies for the value of each currency to be translated from one type of
currency to another. As we know, the exchange rate changes constantly even within
a day and often even within an hour. Given that we use different objects to display
the exchange rate, which in our system are responsible for displaying the graphs
with the exchange rate data, whenever there is a change in the exchange rate, this

INGENIOUS No. 1, ISSUE 2/ 202116

change must be reflected in each of the objects. If this process were to be done
manually, it would take a lot of time and would not be done immediately, and this
would conflict with the functional requirements of the system, which include real-
time information about the foreign exchange rate. Fortunately, there is a general
solution known as The Observer design pattern for this problem. “Observer pattern
defines a one-to-many dependency relationship between objects, such that when
an object changes state, all its dependents are automatically notified and updated.”
(Erich Gamma, 1994).

CLASS DIAGRAM OF THE OBSERVER PATTERN

The figure above shows the Class diagram of the Observer pattern. This diagram
contains an interface and three classes that implement the interface. The observer
interface has a defined Update () method, which is declared in each of the classes
that implement the interface, as the principle of polymorphism imposes. Each of
these methods provides a different implementation of the same method for each
of the exchange rate types, so we say that a polymorphic implementation of the
Update () method is realized.

2.8 Entity relationship diagram

The database is the backbone of any information system. This is because the
main function of a software is the storage and processing of data based on the
requirements that users have. In the ATM Exchange prototype system, the database
stores important information in terms of user data, exchange rate data and ATM
status data. The entity relationship diagram of the ATM Exchange system has been
built to visualize the database. This diagram consists of three entities which are
“Cardinfo”, “Exchange” and “Bancnotes”. “Cardinfo” stores the attributes of card
ID, primary key, pin, balance and “isAdmin or not” status. “Exchange” stores the
data as the ID which is the primary key of the table, the currency type and the

INGENIOUS No. 1, ISSUE 2/ 2021 17

three values of the exchange rate, the base rate, the selling rate and the buying rate.
“Bancnotes” store the ID attribute values as the primary key, the total number of
denomination of hundreds, fifties, twenties and tens.

ER DIAGRAM

As also shown in the ER diagram, “Exchange” with “Cardinfo” has a 1 x N
relationship, because a currency can have many cards and a card belongs to only
one currency type. On the other hand, the connection between “Exchange” and
“Bancnotes” is a 1 x 1 connection since denominations in an ATM can only be
in one currency and one currency has only one list of denominations. The ER
diagram presented above only presents the basic functionalities of the system,
since in this paper the goal is to explore the potential of providing solutions based
on design patterns and not to design complex databases that store huge amounts
of information.

2.9 Algorithm comments

After analyzing the functional requirements, defining the design patterns that
would be needed to solve some of the key requirements of the system, and building
the UML models of ATM Exchange, we are ready to develop the system. Since the
developed system is a desktop application analogous to an ATM cash machine, the
process of placing the card in the ATM is simulated by a login form.

The customer must have a personal account to access the system. The account
is composed by the personal card number and the user’s password. If any of the
credentials are incorrect, the user is shown an error message asking them to enter
the correct details. In this way, an increased security of the system is enabled.

After successfully logging into the account, the user is presented with a menu
from which he can choose between two options: check the account balance or
perform a currency withdrawal.

INGENIOUS No. 1, ISSUE 2/ 202118

The Java login code has logic such that if a user with the given credentials exists
in the database, in the Cardinfo table, a check is made to read the value of the
isAdmin column for that record. If the isAdmin value is false, the user will be
redirected to the client panel. In the other case if the user has the value “isAdmin
true”, it will be redirected to the administrator panel.

Selecting the balance check option enables the panel that presents information
about the account status of the logged-in user. The information relates to the
personal number of the card, the balance of the account and the corresponding
currency.

The second option for withdrawing currencies, displays a panel where a simple
form is presented in which the customer determines the amount he wants to
withdraw from the ATM. On the other hand, three graphs show the exchange
rate, named as: “The base rate”, “The purchase rate”, and “The sale rate” of different
currencies.

The system is built based on some constraints, so that the model approximates
the real model as much as possible. The amount that can be withdrawn from the
ATM must be a multiple of ten. Also, the customer cannot withdraw an amount
beyond the total that he has in his personal account. Another limitation is related
to the total balance of the ATM. In case the customer requests to withdraw a larger
amount compared to the ATM balance, there will be shown an informational
message, just like in the two cases mentioned above.

Meanwhile, in case of success, the system prints a message showing to customer
the banknote denominations of the completed transaction.

The second user entity is the administrator, who can also log into the system
using personal credentials. His role is related to the management of the entire
ATM system, where he can manage customer accounts, ATM card balances and
exchange rates.

The administrator has the ability to manage the personal accounts of users,
adding new customers, updating their data and deleting them from the system.

Since the fields are mandatory, if any of them is empty, an error message appears
that all fields must be filled. Otherwise, it continues with the declaration of the
query that inserts the data. Next, the method that makes the connection to the
database is called. Communication with the database is carried out by means of
a prepared statement, passing the values as parameters and not as values directly
in the query. This is done for security reasons, since prepared statements are more
protected against SQL injections and cyber-attacks.

In the ATM management option, the possible functions that he can perform are
related to the maintenance of the state of the system in terms of its overall balance,
through the addition, deletion and updating of banknotes that the customer can
withdraw through his account.

INGENIOUS No. 1, ISSUE 2/ 2021 19

Furthermore, exchange rate fluctuations, directly related to each client’s personal
accounts, are also managed by the admin. In this way, the interaction between the
two actors is realized, enabling a simple system in use and maintenance.

Conclusions

Based on the theoretical analysis and the development of the information system
designed using design patterns, the following conclusions were reached:

• Software development based on design patterns provides fast, well-proven
and reliable solutions to complex development problems. Using them
properly allow us to create powerful software systems that meet end-user
requirements and have a well-defined architecture.

• System modeling, which includes UML, use cases and sequence diagrams,
in addition to enabling software visualization, improves the development
process by accurately and quickly generating a significant amount of code
directly from the model.

• When talking about a successful software application, it is not only about
how it performs the function for which it was developed, but also about the
efforts that have been made for its development, testing and maintenance. If
this is not done correctly, the cost of development will result in an app that
no one wants.

• Design principles enable writing better code. Also following these principles
helps create a clean and modular design that is easier to test, debug and
maintain in the future. Furthermore, features should be implemented when
necessary and code duplication should be avoided. It should not be forgotten
that a clean code is easier to understand and certainly saves time at the time
of changes or new implementations.

• Object-oriented programming is a powerful and natural paradigm for
creating programs that survive the inevitable changes that accompany the
life cycle of any large software project.

• In the future, I would suggest raising the awareness of the developer
community about the importance of studying and implementing design
patterns as among the best development practices.

• Trends in banking and foreign exchange developments will continue to
evolve as long as technology advances. Artificial intelligence will likely
continue to advance data analysis and improve the way these market players
interact with each other.

INGENIOUS No. 1, ISSUE 2/ 202120

Bibliography

1.Alexander, C. (1977). A Pattern Language. Oxfordd University Press.
What is Class Diagram? (2022). Retrieved from visual-paradigm: https://www.visual-paradigm.

com/guide/uml-unified-modeling-language/what-is-class-diagram/
2. Erich Gamma, R. H. (1994). Design Patterns: Elements of Reusable Object Oriented Software.

Addison-Wesley Professional.
3. Papajorgji, P. J. (2014). Software Engineering Techniques Applied to Agricultural Systems, An

Object-Oriented and UML Approach. Springer.
3. What is Use Case Diagram? (2022). Retrieved from visual-paradigm: https://www.visual-

paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/

	ingenious 1-2, kopertina
	ingenious 1-2
	Software development
	using design patterns
	MSc. Aurela Kallja

	Technical aspects of water supply
	and sewerage in Shkodër
	MSc. Ing. Dajana Arrtunda

	ERP Systems in business function
	Management of fixed assets and contracts modules in Microsoft Dynamics 365 Business Central
	MSc. Emanuela Maraj

	Development of Tirana’s road infrastructure after the 1990s
	MSc. Ing. Iva Josifi

	Study on the integrated use of photovoltaic plants (pvt) for the production of electrical energy and heat using heat pumps (pn-pt)
	MSc. Ing. Luciano Zefi

	Designing and implementing
an information management system
for a non-public educational institution
	MSc. Megi DUÇI

	Some model driven software development approaches
	MSc. Shaqir Sulaj

